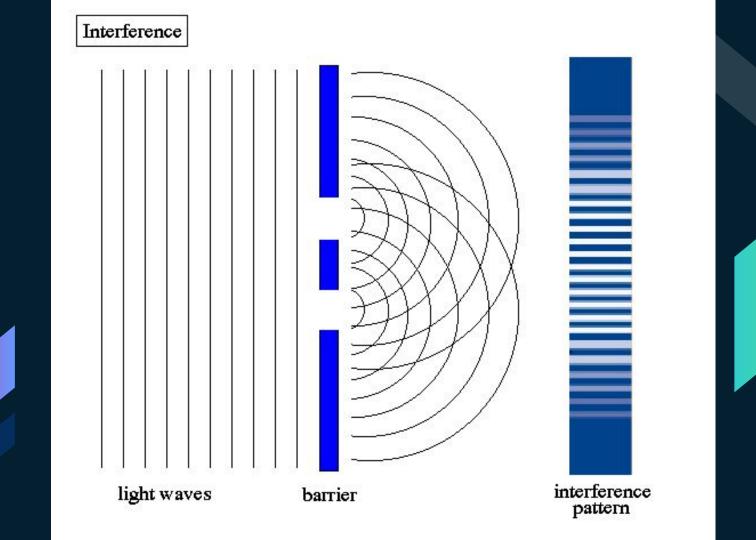

Waves & Sound Ethan, Phillip, Boyuan Period 2

Waves

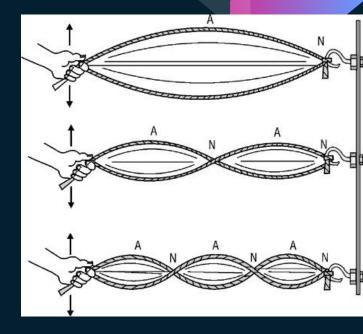
- > Travelling vibrations
- Carry energy
- Speed of Light: c = 3.00x10⁸ m/s
 - Speed of sound: v = 344 m/s (in dry air at 20°C)

Wave Characteristics

V=λf


Types of Waves

Longitudinal - Motion is in the same direction as wave propagation Light, earthquake secondary waves, water ripples Transverse - Motion is perpendicular to wave propagation Sound, earthquake primary waves


Interference

- When 2 or more waves meet
- *Constructive Interference* Crest of one wave overlaps with crest of another (effects are additive)
 - **Destructive Interference** Crest of one wave meets trough of another (effects decrease)

Standing Waves

Result from interference: 2 oppositely moving waves of equal amplitude and wavelength pass through each other *Nodes*: Fixed/stationary_points, Antinodes: Positions with the largest amplitudes (halfway between nodes)

Sound: Origin

- > Sound is created by a vibrating source.
- The frequency at which the source vibrates is the same as the frequency of the sound wave
 - **Natural Frequency** Frequency at which minimum energy is required for vibrations
 - Frequency is measured in Hz (cycles per second)

Sound: Travel and Interpretation

- Sound travels in longitudinal waves
- Compressions compressed areas of higher pressure
- **Rarefactions** decompressed areas of low pressure
- We interpret sound waves as pitch
 - **Pitch** the brain's interpretation of frequency
 - Higher frequency = higher pitch (same for low)
 - > Below 25 Hz infrasonic
 - > Above 20,000 Hz Ultrasonic

Doppler Effect

Apparent change in frequency due to the movement of the source or of the receiver Moving toward = higher pitch Moving away = lower pitch V_{s} = velocity of the source V = speed of sound (+) moving away (-) moving towards

Loudness

> Loudness: the brain's interpretation of intensity

Measured in Decibels (dB)

Intensity = $\frac{Power}{Area}$ $\beta = 10\log\frac{I_1}{I_0}$

I_o= 10⁻¹² W/m > "Threshold of Hearing"

Speed of Sound

- Sound cannot travel in a vacuum.
 Speed of sound is dependent on the elasticity
 - <u>Elasticity</u>: measure of a material's propensity to retain its shape
 Sound travels fastest through solids,
 slowest in gases
 Higher elasticity = higher speed of sound

Speed of Sound

E = Elastic Modulus (N/m²) for solids B = Bulk Modulus (N/m²) for liquids/gases ρ = density (kg/m³)

Resonance

The dramatic increase in amplitude that occurs when frequency of a forced vibration on an object matches the object's natural frequency

Timbre

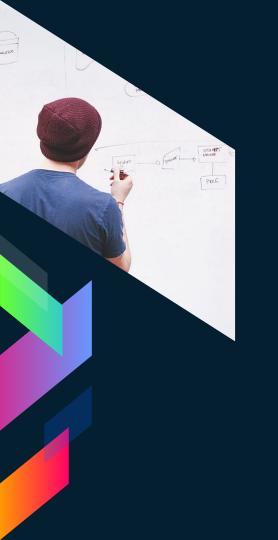
- The character of quality of a musical sound or voice as distinct from its pitch and intensity
 - Also known as tone quality or tone color

Common Mistakes

- Waves DO NOT carry MATTER
- Waves do not travel in vacuums
- > Sound expands in 3 dimensions, spherically

Demo Problem

A police car is driving away from you at a speed of 50 m/s. Its siren emits a frequency of 700 Hz. What is the apparent frequency?


Practice Problem

Due to your abnormal fear of police cars, you start running away East at 10 m/s from the police car (traveling 50 m/s) that is traveling West. What is the new apparent frequency?

Practice Problem

Due to your abnormal fear of police cars, you start running away East at 10 m/s from the police car (traveling 50 m/s) that is traveling West. What is the new apparent frequency?

Answer: 596 m/s

The End