

PROJECT

WAVES & SIMPLE HARMONIC MOTION

"EVERY WAVE, REGARDLESS OF HOW HIGH AND FORCEFUL IT CRESTS, MUST EVENTUALLY COLLAPSE WITHIN ITSELF."

- STEFAN ZWEIG

What's a Wave?

- * A wave is a wiggle in time and space
- * The source of a wave is almost always a vibration
 - * A vibration is a wiggle in time
- * So a wave is basically a traveling vibration
 - BUT carries energy from the vibrating source to the receiver; it does NOT transfer matter

Richter 15

* The biggest earthquake in recorded history happened in Chile in 1960. It measured 9.5 in the Richter scale.

What if a magnitude 15 hit America? 20? 25?

Qualities of a Wave

- * Period (T)
 - * Time it takes for one back-and-forth cycle
 - * In seconds (s)
- * Wavelength (λ)
 - * Distance between successive identical parts of the wave
 - * In meters (m)
- * Frequency (f)
 - * Number of vibrations in a given time
 - * In Hertz (Hz)
 - * *f* = 1/T

Qualities of a Wave

* Velocity

- * Speed and direction of the wave
- * In m/s

*
$$V = \lambda f$$

* Crests

- * Peaks or high point of the wave
- Troughs
 - * Valleys or low points of the wave
- * Amplitude (A)
 - Distance from midpoint to crest (or trough)
 - Maximum displacement from equilibrium

WAVE MOTION

Wave Speed

- In a freight train, each car is 10 m long. If two cars roll by you every second, how fast is the train moving?
 - * v = d/t = 2x(10 m)/(1 s) = 20 m/s
- * A wave has a wavelength of 10 m. If the frequency is 2 Hz, how fast is the wave traveling?

* $v = \lambda f = (10 \text{ m})(2 \text{ Hz}) = 20 \text{ m/s}$

Wave Speed

Speed of a light wave
c = 299,792 km/s (186,282 mi/s)
Speed of sound (in dry air at 20° C)
v = 343.59 m/s (768.59 mph)
Speed of sound in a vacuum?

v = 0 m/s

Types of Waves

- * Transverse Waves
 - Motion of the medium is perpendicular to the direction in which the wave travels
 - * Examples:
 - * Ripples in the water
 - * A whip
 - * Light
 - * Earthquake secondary waves

Types of Waves

- * Longitudinal Waves
 - Motion of the medium is in the same direction as in which the wave travels
 - * Also called compression waves
 - * Examples:
 - * Earthquake primary waves
 - Sound

Interference

- * Occurs when two of more waves meet
- * Parts of the waves may overlap and form an interference pattern
 - Wave effects may be increased, decreased, or neutralized

Interference

- * When the crest of one wave overlaps with the crest of another, their individual effects add up
 - * Called constructive interference
- * When the crest of one wave meets the trough of another, their individual effects decrease
 - * Called destructive interference
- Characteristic of all wave motion, whether water waves, sound waves, or light waves

Phase

- * Phase is the relationship between the period of a wave and an external reference point
- * Two waves which are in phase are in synch
- Two waves which are out of phase are out of synch

Interferometry

- A family of techniques in which you use wave interference patterns to extract information about the wave is called interferometry
 - Usually measures interference between light waves (especially from lasers)

GRAVITATIONAL WAVES

FROM TWO ORBITING BLACK HOLES

GRAVITATIONAL WAVES & INTERFEROMETRY

HTTPS://WWW.YOUTUBE.COM/WATCH?V=HRDUBZ319XI

Standing Waves

- * Also known as a stationary wave
- * A standing wave is one where particular points on the wave are "fixed," or stationary
 - * Fixed points on a standing wave are called *nodes*
 - Positions on a standing wave with the largest amplitudes are called antinodes
 - * Antinodes occur halfway between nodes

Standing Waves

- * Standing waves are the result of interference
 - * Two waves of equal amplitude and wavelength pass through each other in opposite directions
 - * Waves are always out of phase at the nodes
 - Nodes are are stable regions of destructive interference

ACOUSTIC LEVITATION

HTTPS://WWW.YOUTUBE.COM/WATCH?V=0K8ZS-KSITC

2D STANDING WAVES

HTTPS://WWW.YOUTUBE.COM/WATCH?V=WVJAGRUBF4W

Electron Orbitals

- Electrons move around the nucleus in orbital shells. But why do the shells have electron-holding capacities of 2, 8, 18, 32... specifically?
- * Electrons are both particles and waves
- * Electrons bound to the nucleus are 3 dimensional standing waves!

Simple Harmonic Motion

- Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium
- * A restoring force is a force that tries to move the system back to equilibrium

Describing Oscillation

- Begin with the origin at equilibrium
- *x* is then the displacement
 from equilibrium, i.e. the
 change in the length of the
 spring
- When displaced, the spring force tends to restore the mass to equilibrium — restoring force
- Oscillation can only occur when there is a restoring force

Describing Oscillation

- Displace the body to the right to
 x = A and let go
- Net force and acceleration are to the <u>left</u>
- Reaches maximum velocity at <u>0</u>
- Net force at O is <u>zero</u>
- Overshoots and compresses spring
- Net force and acceleration to <u>right</u>
- Compresses until x = -A

Terms for Periodic Motion

- Amplitude (A) magnitude of displacement from equilibrium
 - * Total range of motion is 2A
- * Period (T) seconds per cycle; T = 1/f
- * Frequency (f) cycles per second; f = 1/T
- * Angular frequency (ω) $\omega = 2\pi f = 2\pi/T$
 - * essentially average angular speed

Simple Harmonic Motion

- Periodic motion where the restoring force is directly proportional to the displacement from equilibrium
- Typified by motion obeying Hooke's Law
- Motion is sinusoidal

Hooke's Law

- * $F_s = -kx$
 - * Restoring force exerted by an ideal spring
- IMPORTANT ASSUMPTION: no friction and massless spring

* $a = F_s/m = -kx/m$

Things to Note

- * a = -kx/m
- Acceleration is NOT constant
- Cannot use kinematic equations

Harmonic Oscillators

Why are they important?

SHM is a powerful model for many different periodic motions

E.g. Electric current in an AC circuit, vibrations on a guitar string, vibrations of atoms in molecules

Circle of Reference

- Imagine watching the shadow of a ball being swung in a vertical circle
- If the amplitude of the body's oscillation is equal to the radius of the sting attached to the ball
- * And if the angular frequency $2\pi f$ of the oscillating body is equal to the angular speed ω of the revolving ball
- * The motion of the shadow is *identical* to the motion of the ideal spring
- * http://www.animations.physics.unsw.edu.au/jw/SHM.htm

SHM and Circular Motion

exactly equal

- * acceleration of ball on string: $a = \omega^2 r$
- * acceleration of S-M system: a = (k/m)x

*
$$r = x$$

*
$$\omega^2 = k/m \text{ or } \omega = \sqrt{(k/m)}$$

SHM and Circular Motion

*
$$f = \omega/2\pi = (1/2\pi)\sqrt{k/m}$$

- * $T = 2\pi/\omega = 2\pi\sqrt{m/k}$
 - * The larger the mass, the greater the moment of inertia, the longer it takes to complete a cycle
 - The stiffer the spring (the larger k), the shorter the time T per cycle

Things to Note

- * Don't confuse frequency f with angular frequency $\omega = 2\pi f$
- The period and frequency do NOT depend on the amplitude A
 - Bigger A → larger restoring force → higher average velocity

Example

- * A 6.0 N weight is hung from a spring. The weight stretches the spring 0.030 m.
 - * Calculate the spring constant k
- * $F_s = F_g$
- * -kx = -W
- * k = W/x
- * *k* = 200 N/m

Example

- The same spring is placed horizontally with one attached to the wall and the other attached to a 0.50 kg mass. The mass is pulled a distance of 0.020 m, released, and allowed to oscillate
 - Find the angular frequency, frequency, and period of oscillation
- * $\omega = \sqrt{(k/m)} = \sqrt{(200/0.50)} = 20$ rad/s
- * $f = \omega/(2\pi) = 3.18$ Hz
- * T = 1/f = 1/3.18 = 0.314 s

SHM of a Simple Pendulum

 Almost exactly the same behavior as the massspring system

* Except:

- * The restoring force is the force of gravity
- * $T = 2\pi \sqrt{L/g}$
 - * Independent of A (same reason as M-S system)
 - * Independent of m (guesses why?)

Displacement in SHM

*
$$x(t) = A \cos(\omega t)$$

- * Could have written in terms of sine since $\cos\theta = \sin(\theta + \pi/2)$
- In SHM the position is a periodic, sinusoidal function of time

Velocity and Acceleration in SHM

* $v(t) = x' = -\omega A \sin(\omega t)$

*
$$v(x) = -\sqrt{\omega(A^2 - x^2)}$$

*
$$a(t) = x'' = -\omega^2 A \cos(\omega t)$$

* $v_{\text{max}} = A\omega$

Energy in SHM

- $* PE_{s} = \frac{1}{2}kx^{2}$
- * $PE_g = mgh$
- * $KE = \frac{1}{2}mv^2$

Question

* A 17.0 g mass on a 35 N/m spring is pulled 20 cm from equilibrium and released. What is the position of the mass at time t = 1.2s?

Answer

* $x = A\cos(\omega t)$

* $\omega = \sqrt{k/m}$

*
$$\omega = \sqrt{(35 \text{ N/m})/(0.017 \text{ kg})}$$

* $\omega = 45.4 \text{ rad/s}$

* $x = (.2 \text{ m})\cos[(45.4 \text{ rad/s})(1.2 \text{ s})]$

* x = -0.101 m or -10.1 cm

Question

You find yourself on a strange planet armed only with a simple pendulum. The bob of the pendulum hangs on a 0.45 m long string and will swing through a full oscillation in 1.7 s once set in motion. Use this information to find the acceleration due to gravity on this foreign planet.