## CONCEPTUAL PHYSICS PRACTICE PAGE

## Chapter 22 Electric Current Series Circuits

1. In the circuit shown at the right, a voltage of 6 V pushes charge through a single resistor of 2  $\Omega$ . According to Ohm's law, the current in the resistor (and therefore in the whole circuit) is







If a second identical lamp is added, as on the left, the 6-V battery must push charge through a total resistance of \_\_\_\_\_  $\Omega$ . The current in the circuit is then \_\_\_\_\_ A.

- 3. The equivalent resistance of three 4- $\Omega$  resistors in series is \_\_\_\_\_ $\Omega$ .
- 4. Does current flow through a resistor, or across a resistor? \_\_\_\_\_\_\_

  Is voltage established through a resistor, or across a resistor? \_\_\_\_\_\_\_
- 5. Does current in the lamps occur simultaneously, or does charge flow first through one lamp, then the other, and finally the last in turn?
- 6. Circuits a and b below are identical with all bulbs rated at equal wattage (therefore equal resistance). The only difference between the circuits is that Bulb 5 has a short circuit, as shown.





- a. In which circuit is the current greater? \_\_\_\_
- b. In which circuit are all three bulbs equally bright?
- c. What bulbs are the brightest?
- d. What bulb is the dimmest?\_\_\_\_
- e. What bulbs have the largest voltage drops across them?
- f. Which circuit dissipates more power?\_\_\_\_\_
- g. What circuit produces more light?