Projectile Motion

Alex Barsom, Amy Kim, Taylor Post, Kate Bonham

Vector Math

• When adding vectors in the same dimension, simply add or subtract them according to which direction they travel.

$\longrightarrow + \Leftarrow = \longrightarrow$

- If they are not along the same line:
 - Tail to tip method
 - Parallelogram method

Vector Math Cont.

• Use trig to find the angle of resultant vector

You could describe this vector as V= 600 @ 35 degrees or V= 491x + 344y

Vector Math Cont.

- To decompose vectors:
 - Break them into their x and y components
 - Add the x components to find resultant x
 - Add the y components to find resultant y
 - Use Pythagorean Thm to find magnitude
 - Use trig to find angles, directions

Common Mistakes:

- 1. Make sure calculator is in **degree** mode
- 2. Pay attention to negative signs when adding multiple vectors with different directions

3 Common Misconceptions

1. Gravity has NO effect horizontally as there is nothing to accelerate

-therefore, the horizontal velocity of a projectile will remain CONSTANT

2. The horizontal and vertical components of a projectile are completely INDEPENDENT of each other

3. The vertical velocity of a projectile behaves EXACTLY the same as free fall (use kinematics)

Concepts

- Since vertical and horizontal components are independent of each other, they reach the ground at the same time
- The horizontal velocity will remain *constant*, the vertical velocity will act as if in free fall

Equations!

1.
$$v_f = v_o + at$$

2. $x_f = x_o + v_o t + \frac{1}{2}at^2$
3. $v_f^2 = v_o^2 + 2a(x_f - x_o)$
4. $x_f = x_o + \frac{1}{2}(v_f + v_o)t$

Remember that when dealing with vectors you should use trig. - SOH, CAH, TOA

Strategies for tackling FRQs

-Figure out what variables are given in order to determine which kinematic equation to use

-Keep in mind that the gravity constant (9.81 m/s^2) might not be directly stated

-Projectile motion deals with vectors, so make sure you are able to split up the vector into vertical and horizontal components using the vector length and the angle degree

Example of tackling an FRQ

Example: A ball is thrown with an initial velocity of 3.00 m/s. What is the ball's position and speed after 1.00 s and 2.00s?

-DO NOT USE: speed=distance/time

-INSTEAD \rightarrow use the kinematics to find the position and speed

Another Example

-Remember at the top of of the maximum height, the velocity is **ZERO**.

-If you are trying to find the amount of time that passes before the ball hits the ground, you would use the kinematic:

<mark>Vf=Vi +a</mark>∆t

 \rightarrow REMEMBER TO **DOUBLE** THE TIME!! Because you are only finding the time to the max height, so you need to double it

1. Big Jack walks 34 m South, 25 m West, and 25 m North. What is the magnitude of his displacement?

- A. 79 m
- B. 47 m
- C. 22 m
- D. 62 m

1. Big Jack walks 34 m South, 25 m West, and 25 m North. What is the magnitude of his displacement?

- A. 79 m
- B. 47 m
- C. 22 m
- D. 62 m

2. A soccer ball is kicked with a velocity of 25 m/s at an angle of 37 degrees above the horizontal. What is the vertical component of the acceleration as it rises along its trajectory?

- A. 9.8 m/s/s downward
- B. (9.8 sin 37) m/s/s upward
- C. (9.8 cos 37) m/s/s downward
- D. (9.8 sin 37) m/s/s downward
- E. 9.8 m/s/s upward

2. A soccer ball is kicked with a velocity of 25 m/s at an angle of 37 degrees above the horizontal. What is the vertical component of the acceleration as it rises along its trajectory?

A. 9.8 m/s/s downward

- B. (9.8 sin 37) m/s/s upward
- C. (9.8 cos 37) m/s/s downward
- D. (9.8 sin 37) m/s/s downward
- E. 9.8 m/s/s upward

3. A bullet is fired horizontally, and at the same time a second bullet is dropped from the same height. Ignore air resistance. Compare fall times.

- A. The fired bullet hits first
- B. The dropped bullet hits first
- C. They hit at the same time
- D. Cannot tell w/out knowing masses

3. A bullet is fired horizontally, and at the same time a second bullet is dropped from the same height. Ignore air resistance. Compare fall times.

- A. The fired bullet hits first
- B. The dropped bullet hits first
- C. They hit at the same time
- D. Cannot tell w/out knowing masses

4. You roll a 5 kg ball off a 1m high table. The ball leaves the table with a speed of 2 m/s. Before falling off the table, it has rolled for .5m. How long has the ball rolled on the table?

A.) .25 s

B.) .35 s

C.) .50 s

D.) .12 s

4. You roll a 5 kg ball off a 1m high table. The ball leaves the table with a speed of 2 m/s. Before falling off the table, it has rolled for .5m. For how long has the ball rolled on the table before falling off?

A.) .25 s

B.) .35 s

C.) .50 s

D.) .12 s

5. A bullet is fired at an angle of 40 degrees with a velocity of 100 m/s. How fast does the bullet go horizontally?

A.) 75.4 m/s

B.) 97.4 m/s

C.) 69.6 m/s

D.) 76.6 m/s

5. A bullet is fired at an angle of 40 degrees with a velocity of 100 m/s. How fast does the bullet go horizontally?

A.) 75.4 m/s

B.) 97.4 m/s

C.) 69.6 m/s

D.) 76.6 m/s