

Rotational Mechanics

"We dance round in a ring and suppose, but the secret sits in the middle and knows." - Robert Frost

Why do you hold your arms out when trying to hold your balance (on a balance beam, tightrope, slack line, curb etc.)?

Why do figure skaters pull their arms and legs in when performing quick spins?

Rotational Motion

- Motion of a rigid body is usually broken up into *translational motion* of its center of mass and *rotational motion* about an axis of rotation
 - A rigid body is one which has definite and unchanging shape

Angular Quantities

- Angular quantities are analogous to corresponding quantities in linear motion
 - Instead of asking how far and how fast an object travels, we can ask how much and how quickly it rotates

Angular Quantities

θ

Quantity	Linear	Angular	Relationship	
position	<i>l</i> in meters	θ in radians	$\theta = l/r$	
velocity	v in m/s	ω in rad/s	$\omega = v/r$ $= \Delta \theta / \Delta t$	
acceleration	$a \text{ in m/s}^2$	α in rad/s ²	$\alpha = a/r$ $= \Delta \omega / \Delta t$	

- A particular bird's eye can just distinguish objects that subtend an angle no smaller than about 3×10
 - a) How many degrees is this?
 - b) How small an object can the bird just distinguish when flying at a height of 100 m?
- Ans. a) $\theta = 0.017^{\circ}$
- b) $l = 3 \, cm$

Sanity Check

- A rotating carousel has one child sitting on a horse near the outer edge and another child on a lion halfway out from the center.
 - a) Which child has greater linear speed?
 - b) Which child has greater angular speed?
- Ans. a) the child on the borse

b) both are the same

Circular Motion & Angular Quantities

- Centripetal acceleration in terms of angular velocity
 - $a_c = \omega^2 r$
- Frequency in terms of angular velocity
 - $\omega = 2\pi f$

- a) What is the linear speed of a child seated 1.2 m from the center of a steadily rotating merry-go-round that makes one complete revolution in 4.0 s?
- b) What is her acceleration (tangential and centripetal)?
 - Ans. a) v = 1.9 m/s
 - b) $a_l = 0; a_c = 5.0 m/s^2$

- The platter of the hard disk of a computer rotates at 5400 rpm.
- a) What is the angular velocity of the disk?
- b) If the reading head is of the drive is located 3.0 cm from the axis of rotation, what is the speed of the of the disk below it?
- c) What is the linear acceleration of this point?
- d) If a single bit requires 5 µm of length along the motion direction, how many bits per second can the writing head write when it is 3.0 cm from the axis?

- The platter of the hard disk of a computer rotates at 5400 rpm.
- a) What is the angular velocity of the disk?
- b) If the reading head is of the drive is located 3.0 cm from the axis of rotation, what is the speed of the of the disk below it?
- c) What is the linear acceleration of this point?
- d) If a single bit requires 5 µm of length along the motion direction, how many bits per second can the writing head write when it is 3.0 cm from the axis?

- Ans. a) ω = 570 rad/s
- b) v = 17 m/s
- c) a_c = 9700 m/s²
- d) 3.4×106 bits per second = 425 Kbps

Kinematic Equations

Angular	Linear
$\omega_{\rm f} = \omega_{\rm i} + \alpha \Delta t$	$v_{\rm f} = v_{\rm i} + a\Delta t$
$\Delta \theta = \omega_{\rm i} \Delta t + \frac{1}{2} \alpha \Delta t^2$	$\Delta x = v_i \Delta t + \frac{1}{2} a \Delta t^2$
$\omega_{\rm f}{}^2 = \omega_{\rm i}{}^2 + 2\alpha\Delta\theta$	$v_{\rm f}^2 = v_{\rm i}^2 + 2a\Delta x$

Note: remember! the kinematic equations only work for *constant* acceleration, whether angular or linear

- A centrifuge rotor is accelerated from rest to 20,000 rpm in 5.0 min.
- How many revolutions has it turned through in this time?
 - Ans. $\alpha = 7.0 \ rad/s^2$
 - $\Delta \theta = 3.15 \times 10^5 \text{ rad} = 5.0 \times 10^4 \text{ rev}.$

- A bicycle slows down uniformly from a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine
- a) the angular velocity of the wheels at the initial instant
- b) the total number of revolutions each wheel rotates in coming to rest
- c) the angular acceleration of the wheel
- d) the time it took to come to a stop

 A bicycle slows down uniformly from v₀ = 8.40 m/s to rest over a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine

a) the angular velocity of the wheels at the initial instant

•
$$\omega_0 = U_0/r$$

- $\omega_0 = (8.40 \text{ m/s})/(0.340 \text{ m})$
- $\omega_0 = 24.7 \text{ rad/s}$

 A bicycle slows down uniformly from v₀ = 8.40 m/s to rest over a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine

b) the total number of revolutions each wheel rotates in coming to rest

- Revs = d/C
- Revs = $d/(2\pi r)$
- Revs = (115 m)/(2π•0.340 m)
- Revs = 53.8 rev

 A bicycle slows down uniformly from v₀ = 8.40 m/s to rest over a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine

c) the angular acceleration of the wheel

•
$$\alpha = (\omega_1^2 - \omega_0^2)/(2\Delta\theta)$$

- $\alpha = (0 (24.7 \text{ rad/s})^2)/(2 \cdot 2\pi \cdot 53.8 \text{ rev})$
- $\alpha = -0.902 \text{ rad/s}^2$

 A bicycle slows down uniformly from v₀ = 8.40 m/s to rest over a distance of 115 m. Each wheel and tire has an overall diameter of 68.0 cm. Determine

c) the time it took to come to a stop

•
$$t = (\omega_1 - \omega_0)/\alpha$$

- $t = (0 24.7 \text{ rad/s})/(-0.902 \text{ rad/s}^2)$
- *t* = 27.4 s

Torque

- Rotational kinematics how things rotate
- Rotational dynamics why things rotate
 - · To make an object rotate, we need a force
 - But the direction of the force, and where we apply it, matters

Torque

- Apply force F₁
 - The bigger the force, the more quickly the door opens
- Apply the same force closer to the hinge, at F₂
 - · Door will not open as quickly
- The angular acceleration of the door is proportional to the magnitude of the force applied and the distance that force is from the axis of rotation
 - That distance is called the lever arm

Torque (or why hobbit doors are a dumb design)

- The "twisting force" which cause rotation is called the torque (τ)
 - $\tau = r F_{\perp}$
 - Measure in Nm
- $\alpha \propto \tau$ (just like $a \propto F$)

Torque

 F_3

- F₁, F₂, and F₃ might all be the same magnitude and the same distance r from the hinge
 - but they will *not* all result in the same twisting motion
 - only the *perpendicular* component of the force will contribute to rotation

Torque

- F₁, F₂, and F₃ might all be the same magnitude and the same distance r from the hinge
 - but they will *not* all result in the same twisting motion
 - only the *perpendicular* component of the force will contribute to rotation

- Hercules and the Hulk are in competition for some reason. They've matched each other in every test of strength, so Bruce Banner devises the following tug-of-war-esque challenge.
- Two thin cylindrical wheels, of radii r₁ = 3.0 m and r₂ = 5.0 m, are attached to each other on an axel that passes through the center of each.
- Both apply 5 million N of force as shown to the right. Who wins? What's the net torque?
 - Ans. The Hulk wins. $\tau_{net} = -6.7 \times 10^6 Nm$

Rotational Inertia

- Linear acceleration
 - $a = \sum F / m$
- Angular acceleration
 - $\alpha = \sum \tau / I$
- Moment of inertia (or rotational inertia) is a measure of a body's resistance to changes in its rotation
 - · Rotational "laziness"

Rotational Inertia

- Picture a particle of mass m revolving in a circle of radius r
- Initially at rest, we want this particle to start rotating, so we give it a push
- *F* = *ma*
- *F* = mrα
- $\tau = mr^2 \alpha$
 - mr² represents the moment of inertia of the particle (measured in kg · m²)

Rotational Inertia

- Consider a rotating rigid body
 - basically a collection of particles all at varying distances from the axis of rotation
- $\Sigma \tau = \Sigma (mr^2) \alpha$

•
$$I = \sum mr^2$$

 $\sum \tau = I \alpha$

· Newton's 2nd Law for rotation

Things to Note

- Moment of inertia (I) plays the same role for rotational motion that mass plays for translational motion
- The rotational inertia of an object depends not only on its mass, but also on how that mass is distributed with respect to the axis of rotation
- A large-diameter cylinder will have greater rotational inertia than a smaller-diameter cylinder of equal mass
 - The former will be harder to start rotating and harder to stop

- Two weights of mass 5.0 kg and 7.0 kg are mounted 4.0 m apart on a massless rod. Calculate the moment of inertia of the system
 - a) when rotated about an axis halfway between the weights
 - b) when the system rotates about an axis 0.50 m to the left of the 5.0-kg-mass
- a) $I = 48 kg \cdot m^2$

b) $I = 145 \text{ kg} \cdot m^2$

Moment of Inertia

- Don't memorize
- *Do*
 - roughly how they rank from greatest to least
 - what that implies about their behavior

- A 15.0 N force is applied to a cord wrapped around a pulley of mass M = 4.00 kg and radius R = 33.0 cm. The pulley is observed to accelerate uniformly from rest to reach an angular speed of 30.0 rad/s in 3.00 s. If there is a frictional torque (at the axle), τ_{fr} = 1.10 Nm, determine the moment of inertia of the pulley.
 - $\Sigma \tau = 3.85 Nm$
 - $\alpha = 10.0 \ rad/s^2$
 - Ans. $I = 0.385 \text{ kg} \cdot m^2$

 $F_{\rm A} = 15.0 \ {\rm N}$

Rotational Kinetic Energy

- Translational kinetic energy
 - $KE_{tran} = \frac{1}{2} mv^2$
- Rotational kinetic energy
 - KE_{rot} = $\frac{1}{2}I\omega^2$
 - Make sure, do the units check out?
- KE_{total} = KE_{tran} + KE_{rot}

 What will be the speed of a solid sphere of mass *M* and radius *R* when it reaches the bottom of an incline if it starts from rest at a vertical height *H* and rolls without slipping?

• And.
$$v = \sqrt{\frac{10}{7}gH}$$

 How does this compare with an object *sliding* down a frictionless incline.

• Ans. $v = \sqrt{2gH}$

Angular Momentum

- Linear momentum
 - *p* = *mv*
- Angular momentum
 - $L = I\omega$
 - Measured in kg \cdot m²/s
- Newton's 2nd Law (linear)
 - $\Sigma F = \Delta \rho / \Delta t$
- Newton's 2nd Law (angular)

• $\Sigma \tau = \Delta L / \Delta t$

Conservation of Angular Momentum

• The total angular momentum of a rotating body remains constant if the net torque acting on it is zero

 A mass *m* attached to the end of a string revolves in a circle on a frictionless tabletop. The other end of the string passes through a hole in the table. Initially, the mass revolves with a speed $v_1 = 2.4$ m/s in a circle of radius $r_1 = 0.80$ m. The string is then pulled slowly through the hole so that the radius is reduced to $r_2 = 0.48$ m. What is the speed, v_2 , of the mass now?

Ans. U₂ = 4.0 m/s

- Why do you hold your arms out when trying to hold your balance (on a balance beam, tightrope, slack line, curb etc.)?
 - Holding your arms out increases your rotational inertial, making it harder for you to tip over.

- Why do figure skaters pull their arms and legs in when performing quick spins?
 - $L = I\omega$ is conserved
 - If you *decrease* your moment of inertia, you *increase* your angular speed

