Forces Review!

by Cole Shute, Anisa Patel, Will bley, and Camille Lorenz

Review off Comcepts

-forcei is avector (It has magnitude and dificition). -MASS: THE MEASURE Of inertia Of a booy -WEIGHT: FORCE DUE TO GRAVITY -NEWTON’s first LaW: An OBJECT Will stay at rest or in motion at constant speed unless acted UPON BY AN EXTERNAL UNBALANCED NET FORCE.
-Force = Mass x Acceleration (F-ma)-Newton's second law -FORCE Of GRAVITY: $F_{6}=$ Mg

- Normal force: Constant force which acts perpendicular to a common surface of contact -EQuilibrium: zero net force
-TERMINAL VELOCITY: FASTEST SPEED II WILL RECCH IN FReEFALL

Review off Concepts

 -NewTON's Third Law: FOR every action there is an equal and opposite reaction -AIR RESISTANCE IS PROPORTIONAL TO SPEED, SO THE FASTER YOU GO, THE HARDER THE FORCE WILL BE -free body diagrams: diagram showing all forces acting on an object -TYpes Of forces:- TENSION: WHEN AFLEXBBE CORD PULLS ON AN OJJECT
- Fricion: contact force, occurs when one surface atempts to move along another surface, Always Opposes motion
- Kinetic, Rolling, Fluid, Static
- THings That affect friction: smoothness of surface, weight (normal force)

Review of Concepts

-THE GreEK Letier MU- coefficient Of friciions
-OBjects on an incline: more Convenient to think about vectors acting peppendicular to the
incline.
$-F_{\text {paralalel }}=F_{G}$ SIN θ
$-F_{\text {perperendicular }}=F_{g} \cos \theta$

MISCONCEPTION \#1

NOrmal Force:

- IT’s not neutral or natural force, it’s normal force
- Normal force is always perpendicular to the object being acted upon
- Does not always Line up with gravity

MISCONCEPTION \#2

- MAss: The amount of matter that is in AN OBJECT
- Never altered by location Or the Pull Of gravity
- KG
- WELGH: the force of gravity acting upon AN OBJECT
- Varies according to location in the UNiverse
- Weight-mass gravitiy
- NewTons
- "WEighing" yourself is not equivalent

TO MASS OR WEIGHT

MISCOINCEPTIOIN \#З

constani force - Constant motion

- Misconcepition by aristotie
- IN THE ABENCE OF FRICTION, AN OBJECT WILL CONTiNUE AT a constant speed in a straight line
- AN OBJECT WILL ONLY SLOW DOWN WHEN A FORCE IS APPLIED ON IT
- Law of inertia: an object in motion will stay in motion unless acted upon by an external force

Straategjies

Step 1: Identify what type of problem you are doing

- Know WHAT EQUATION YOU NeED TO USE
- If it is asking for the force that is exerted: Force- F=ma
- If the project is ASKing for how much Somehing weighs: $\mathrm{F}_{\mathrm{z}}=\mathrm{mg}$
- If it is involving the normal force: $\mathrm{F}_{\mathrm{n}}=\mathrm{F}_{\mathrm{s}}$
- It is always perpendicular to the surface that the object is resting
- Free booy diagrams reat the object as a point
- WHEN DEALING WITH fricition: $\mathrm{F}=\mu \mathrm{F}$

Step 2: Stay organized

Straategjies

- Friction may ask what type of force is holding a car on the road
- NORmal force may ask what force a surface is enacting on an object.
- Weight may involve being on different planets with different gravities
- It is important to Identify all of the forces acting on the object
- Free body diagrams

Straategies

Step 2: Stay Organized

- There are many formulas in this unit and there are many differen forces acting on an OBJECT.
- Free body diagrams can help organize your work.
- Write out the formulas that you may need
- Write out what variables that the problem provides.

How murlh dloes a 118 g peamurt burtter jorr weiggh on Earith?

- 146 N
- 1.146
- 17.4.4N
- 174. W

The Answer!! I-t weiggThs.o. $1 . T 44 \mathbb{N}$!

- 11460
- 1.1400
- 17460
- 174.6 N

Remember! Convert grams to kilograms!

What terrm is usedl to latbell the net force or chamgje inn vellocily beiing $\mathbb{Z} \mathbb{E} \mathbb{R}$?

- Constantrail
- Staicicficicion
- Kineilicricition
- Equilibrium

The amswer iss.o. Equillitbriuim!

- Constant rate
- Static Friction
- Kinetic fricition
- Equilibrium

What is $\mathbb{N} e w t-m$'s 2mdl law?

- F=MA
- Any object stars at rest or in motion unless anoiher force acts upon it
- FOR every action there's an equal and opposite reaction
- All objects deform slighti when they hiteach other

$\mathbb{H i s}$ 2ndl law is.o. $\mathbb{F}=m a!$

- $\mathrm{F}=\mathrm{MA}$
- Anv object stars a tersi or in motion uness anotifer force acts voon it
- For every action where's an equal and oppositit eraction
- All ojjectid defomm slighily when iey hiteachotitir

What is the force off friction on a 2000lkg caro iff the coefficient of firiction is 0.56

- 19,620N
- 10,88/n
- 109,80N
- 19,80

The answero is... 10,981IN

- 19,620N
- 10,88/
- 109,80N
- 19,80

What is the acceleroation of a $\mathbb{T} 6 \mathbb{N}$ force beiing applied to a 441 lkg box ?

- LIM/s
- 1.1.m/s
- 112M/5
- $12.7 \mathrm{~m} / \mathrm{s}$

The Answero is.o. $1.1 \mathrm{~m} / \mathrm{s}$

- $17 \mathrm{~m} / \mathrm{s}$
- $1.7 \mathrm{~m} / \mathrm{s}$
- 172m/S
- 12.7m/s

Thatt's Forrces!

