Electricity

Gaby Figueroa, Lindsay Skarupa, Rachael Franklin, Maddy Reilly, Holly Stoner, Kristan Cotangco

Electricity

Electricity is charge in motion!

Formulas

$$
\begin{aligned}
& \mathrm{V}=\mathrm{IR} \\
& \mathrm{I}=\mathrm{V} / \mathrm{R} \\
& \mathrm{R}=\mathrm{V} / \mathrm{I} \\
& \mathrm{I}=\mathrm{Q} / \mathrm{t} \\
& \mathrm{P}=\mathrm{IV} \\
& \mathrm{P}=\mathrm{I}^{2} \mathrm{R}
\end{aligned}
$$

$$
\mathrm{P}=\mathrm{V}^{2} / \mathrm{R}
$$

Batteries

- Batteries supply electric energy to a system
- A common misconception is that batteries create electric charge
- Batteries do NOT create or supply electric charge
- Batteries only push charge

Electric Gurrent

- Flow of electric charge
- How much charge in a given amount of time
- $\mathrm{I}=\Delta \mathrm{Q} / \Delta \mathrm{t}$
- Measured in amperes (A)

- A common misconception: Current is actually the electrons that flow from negative to positive
- When it was invented it was thought that positive charge flowed into the wire
- Therefore, current, also known as conventional current, is said to flow from positive to negative
- A misconception is the difference between AC and DC
- DC (direct current) only flows in one direction
- AC (alternating current) changes direction periodically

Ohm's Law

The current in a wire is proportional to the potential difference applied to its ends I:V
$\mathrm{V} / \mathrm{I}=$ a constant which gives you a circuit's resistance (R) and thusly, $\mathrm{V}=\mathrm{I} / \mathrm{R}$
Resistance- measured in ohms (Ω)
Common misconception: that conductors have zero resistivity

- All electric devices offer resistance to the flow of current

Resistivity

A property that tells how strongly a material will oppose the flow of an electric current

The lower the resistivity, the easier the flow of the electric current

Measured in Ohm meters ($\Omega \mathrm{m}$)

$$
\text { * } \rho=\text { resistivity }
$$

Common Misconception:

It is not a p, it is the greek letter rho

Superconductors

Even the best conductors put up some resistance to electric current.
Some materials, when cooled to a certain temperature or under, offer zero resistance.
This is called superconductivity!

Power

In kinematics, power is work/time. Energy can be thought of in a similar way. It can be easily transformed into other forms of energy.

Voltage is power per charge.

$$
\mathrm{P}=\mathrm{IV} \quad \mathrm{P}=\mathrm{I}^{2} \mathrm{R} \quad \mathrm{P}=\mathrm{V}^{2} / \mathrm{R}
$$

Series

Voltage: $V=V_{1}+V_{2}+V_{3}+\ldots$
Current: I = constant
Resistance: $\mathrm{R}_{\text {eq }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots$
Capacitors: $1 / \mathrm{C}_{\mathrm{eq}}=1 / \mathrm{C}_{1}+1 / \mathrm{C}_{2}+1 / \mathrm{C}_{3}+\ldots$

Parallel

Voltage: $\mathrm{V}=$ constant
Current: $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\ldots$
Resistance: $1 / R_{\text {eq }}=1 / R_{1}+1 / R_{2}+1 / R_{3}+\ldots$
Capacitors: $\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}+\ldots$

A common misconception is the difference between series and parallel!

Series

Parallel

Kirchhoff's Rules

1. Junction Rule- At any junction, the sum of the currents in equals the sum of the currents out
a. Conservation of charge

2. Loop Rule- The sum of the changes in potential around any closed path of a circuit must be zero
a. Conservation of energy

Electricity

Gaby Figueroa, Lindsay Skarupa, Rachael Franklin, Maddy Reilly, Holly Stoner, Kristan Cotangco

