

the branch of science which deals with celestial objects, space,

and the physical universe as a whole.

Astronomy vs. Astrology

ASTROLOGY

& "study of the stars" \$ Not science & Resulted from the sun/weather controlling the market & Resulted in people studying the stars + searching for patterns & However people only remember the successes of the predictions

Not very accurate

ASTRONOMY

* "Law or culture of the stars"

- & science
- $\overset{}{
 alpha}$ Based on observation
- $\overset{\circ}{a}$ Resulted from Newton applying mathematics to prove his point $\overset{\circ}{a}$ Resulted in the geocentric model being replaced by heliocentric $\overset{\circ}{a}$
- & Puts us in our place.

EARLYASTRONOMERS

☆ Ptoleny, Plato, and Aristotle endorsed geocentric model
 ☆ copernicus invented heliocentric model, Brahe and Kepler improved upon it
 ☆ Isaac Newton applied and enhanced our mathematics
 ☆ Galileo made telescopes better and Newton better still

 \Rightarrow Hipparchus cataloged the stars \Rightarrow Abd Al-Rahman Al-Sufi translated and named the stars \Rightarrow Eratosthenes measured the circumference of Earth \Rightarrow Aristarchus measured distances from Earth to the moon and sun

STARS IN OUR SKY

& Hipparchus created the first catalogue of stars, ranking them in

* Arcturus

* Aldebaran

brightness or magnitude

If the lower the magnitude, the brighter the star

* Polaris

* Rigel

& Prominent stars in our night sky include:

X * Sirius

☆ * Betelgeuse

 \mathcal{X} <u>Orion</u> \rightarrow comprised of seven main stars: Betelgeuse, Rigel, Bellatrix, Alnilam, Saiph, and Sigma Orionis. \mathcal{X} <u>Ursa Minor</u> (also known as little bear or little dipper) \rightarrow comprised of stars: Polaris (North Star), Kocab, Pherkad, Yildun, and Pherkad Minor. \mathcal{X} <u>Ursa Major</u> (also known as big bear or big dipper) \rightarrow main stars include: Alpha Ursae Majoris, Beta Ursae Majoris, and Eta Ursae Majoris. Stars receive names based on the constellation they are found in XX

and their brightness; most are assigned a number

✤ Objects in our sky can appear different colors, due to the Doppler effect

- A red shift implies the object is moving away from our point of reference.
- A blue shift implies the object is moving towards our point of reference.

& Most objects in our sky are red-shifted \rightarrow universe is expanding

TWINKLING

& Twinkling occurs due to turbulent air in Earth's

atmosphere, which distorts incoming light and makes it

appear to shift position and brightness.

X stars that do not twinkle are mostly planets

X Naked eye planets: Mercury, Venus, Mars, Jupiter, & Saturn

LESSONS FROM THE MOON

& Light moves right to & Waxing: Leading up left: to a full moon & New moon, waxing & Waning: Leading up crescent, first quarter, waxing gibbous, to a new moon full moon, waning gibbous, third quarter, waning crescent & The cycle lasts approximately 29.5 days \mathcal{X} Using the size of Earth and through the moon phases, the distance to the sun can be calculated

WHAT TIME DOES THE MOON RISE?

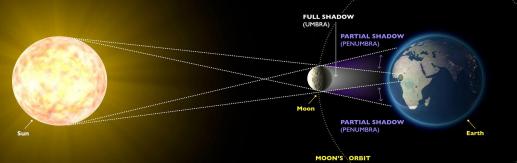
- & Rise times
 - O New Moon: Sunrise
 - 1st quarter: Noon
 - O Full Moon: Sunset
 - O 3rd Quarter: Midnight
- A shares the sky with the sun
- X Opposite sides of Earth see the same phase
- X southern hemisphere sees the same phase, but flipped

ECLIPSES: SOLAR AND LUNAR

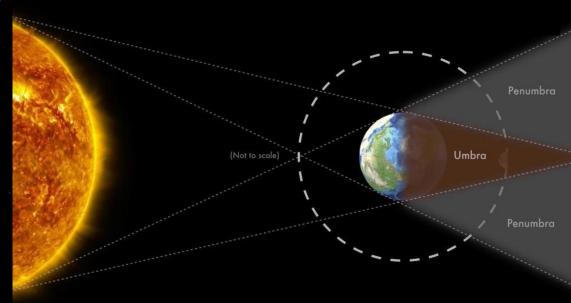
Solar Eclipse:

 ☆ Occurs when the moon passes between the Earth and the Sun.
 ☆ casts a shadow on the Earth, and in the middle, most concentrated section of shadow is the area of totality, where people will experience a total solar eclipse.

Lunar Eclipse:


Occurs when the Earth passes ক্ষ between the moon and the sun The Earth blocks light from the **公** sun, resulting in a shadow cast over the moon. Shadow of the earth on the moon **公** can be tracked and measured to calculate how far the moon is from Earth

SOLAR ECLIPSE:


SOLAR ECLIPSE

SUN, MOON, AND EARTH LINE UP, WITH THE MOON IN THE MIDDLE

Little can be seen with our naked eye, but with the aid of telescopes, much more can be revealed. Telescopes make things easier to see: to make the invisible visible, and to make things already visible visible more clearly.

Refracting vs. Reflecting

THE TWO TYPES OF TELESCOPES:

Refracting

✤ First invented by Hans Janssen

☆ Magnifies light through refraction, and uses

converging lenses ☆ More magnification → larger lenses

Reflecting: & First invented by Isaac Newton & Magnifies light through reflection and mirrors Modern day telescopes, such 対 as Hubble or Mt Wilson use the reflecting models

THE TWO TYPES OF TELESCOPES (CONT.):

Refracting

Advantages:

 $\overset{}{x}$ Objects that look like a dot from a $\overset{}{x}$ distance can be magnified and made $\overset{}{x}$ much more visible.

Disadvantages:

☆ Lenses bend different frequencies
 of light by different amounts.
 ☆ Bigger lenses are more difficult to
 make, and easier to break.

Reflecting:

<u>Advantages</u>:

You only have to polish one side of a mirror. Mirrors can be supported by the back,

and are easier to make.

Disadvantage (also applies to refracting telescopes):

☆ The Earth's atmosphere blocks many frequencies of light, so the telescope cannot see everything.

Remember... we can only see 4% of the observable universe with the naked eye...