

MICRO-SCALE ENERGY

- ALL FORMS OF ENERGY (CHEMICAL, MECHANICAL, ELECTRIC) ARE IN FORMS OF KINETIC OR POTENTIAL ENERGY
- $[=M(^2, M = E/(^2$
- MASS = MASS OF THE PARTS + MASS OF THE KE, PE, AND HEAT

HIGH POTENTIAL ENERGY \longrightarrow LOW

POTENTIAL ENERGY

Proton \leftarrow infinite distance \rightarrow Electron, O PE As they move, PE decreases and KE increases

Mass is a property that all energy exhibits

Simple Machines

Simple machines are devices that use only the forces directly applied and accomplish their task with a single motion.

Ramp

- Work = Force x Distance
- Distance = Path object takes
- Force needed to move object

A lever includes a stiff structure (the lever) that rotates around a fixed point called the fulcrum.

The 3 Classes of Levers 1st Class Input force Input force Output force Output fulcrum force Input 2nd Class force Input force Output force fulcrum Output force **3rd Class** Input force Output Output force Input force force fulcrum

Mechanical Advantage Lever

The Mechanical Advantage equal to

Distance of Input Force to Fulcrum

Distance of Output Force to Fulcrum

Pulleys

Like levers and ramps, pulleys sacrifice displacement to achieve greater force

Efficiency = Output Work / Input Work

