Macro-Scale Energy

----- Sophia Razavi & Zuzu Farrington ------

The Basics

- Energy: the capacity to do work
- Energy cannot be created or destroyed (conserved)
- It's a scalar
- Measured in joules (j)
- Use energy to analyze motion

Forms of Macro-Scale Energy

- Kinetic or mechanical
- Gravitational

• Elastic

• Chemical

- Electrical
- Nuclear

Mass

Work

- The measure of the energy needed to cause a force to move through displacement.
- W = SF•dr
 - Work equals force integrated over distance
- Net work: work done by all forces in a system
- W_{net}= ΔKE
 - Net work done on an object equals the change in its kinetic energy

Work (Continued)

- A force can also be exerted on an object but still enact no work
 - Only does work if it causes movement/motion
- Negative work: Forces done against motion
 - Energy put into the system = positive
 - Energy taken out = negative

Kinetic Energy

- Energy of motion
- $KE = \frac{1}{2}mv^2$

- The kinetic energy of an object equals half of the object's mass multiplied by the square of its speed
- Net force x distance = kinetic energy
 - \circ Fd = $\frac{1}{2}$ mv²

Potential Energy

- Stored energy; energy of position or configuration
 - Doesn't matter how something got to that

position | independent of path taken

- PE_g= mgh
 - The gravitational potential energy of an object is equal to the product of the object's weight and its height

Law of Conservation of Energy

- Total energy in isolated system=constant
- Energy cannot be created or destroyed (only transferred)
 - \circ PE₁+KE₁=PE₂+KE₂
- Ex: as KE increases, PE decreases vise versa)

potential energy changes into kinetic energy as the ball drops toward the ground.

kinetic energy changes into potential chierdy as the ball rebounds from the floor.

Power

- Power: rate at which work is done or energy is transformed
- Measured in watts (W)
 1 watt= 1 joule/second
 - I wall= I joule/s
- P = dW/dt

- **Power** equals the rate at which **work** is done over **time**

Thank You!