Earth and the Solar System

By: Leon Kornfeld, Georgik Markarian, Connor Lee

Origins of the Solar System

- Solar System: Everything held by the sun's gravity
 - Copernicus is credited for the geocentric model of the solar system
 - Kepler is the one who said that the planets orbit in an ellipse
 - Newton used this information to see how gravity works in our solar system
- Sol means sun in Latin

Formation of Solar System

- Stellar Nebula was in balance from the gravity pulling in and the heat pushing out.
- 2. All of a sudden it collapsed
- 3. The center started attracting material and became hot and dense
- 4. Material farther out started crashing into each other forming planet
- 5. The center of the star got so hot that it started fusing hydrogen to make helium
 - a. It became a star
- 6. The hot rocky inner planets could not hold on to the hydrogen and helium emitted from the sun
- 7. Further out the planets were cooler and bigger, so they could hold on to the gas, becoming gas giants
- 8. All the ice, rocks, and particles, that did not form into planets, became the two asteroid belts and the Oort Cloud

Solar System

- Inner Planets
 - Mercury, Venus, Earth, Mars
 - Characteristics:
 - Rocky, small, dense, a few moons
 - Venus has no moons
 - Outer Planets
 - Jupiter, Saturn, Uranus, Neptune
 - Characteristics: .
 - Massive, Higher Gravity, Gaseous, Less dense, More moons
- Asteroid Belt between Mars and Jupiter
- Kuiper Belt beyond Neptune
- Solar system surrounded by Oort Cloud

A Star is Born

Earth Layers

Materials: Crust -Solid rock Mantle -Liquid silicon, iron, magnesium, aluminum, Outer Core -Liquid Iron & Nickel Inner Core -Solid Iron & Nickel

Temperature: Crust: 0°C - 870°C Mantle: 3700°C Outer Core: 4300°C Inner Core: 7200°C

Earth's Interior

- Earth's crust is made out of different plates, called tectonic plates that float on the mantle
- Tectonic plates move constantly, causing earthquakes, volcanos, and the movement of continents
- The crust floats on the mantle due to convection currents
 - The Earth is still hot
 - Uranium Decay, Friction, Leftover Heat from Formation, Pressure from Gravity
- The liquid core conducts electricity and convects which induces a magnetic field
- The Earth's rotation organizes the field and uses it to block UV radiation from the sun and deflects particles from the solar wind
 - Without it our atmosphere would get stripped away and we'd end up like Mars.

Water Cycle Terms

Condensation \rightarrow water which collects as droplets on a cold surface when humid air is in contact with it

Evaporation \rightarrow the process of turning from liquid into vapor Transpiration \rightarrow The exhalation of water vapor through the stomata Precipitation \rightarrow rain, snow, sleet, or hail that falls to the ground Sublimation \rightarrow A solid such as ice turning directly into a gas Deposition \rightarrow A gas turning directly into a soli

Carbon Cycle

Carbon Cycle Terms

Carbon Dioxide \rightarrow a colorless, odorless gas produced by burning carbon and organic compounds and by respiration

Photosynthesis \rightarrow the process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water

Respiration \rightarrow a process in living organisms involving the production of energy, typically with the intake of oxygen and the release of carbon dioxide from the oxidation of complex organic substances

Atmosphere and Greenhouse Effect

- We have lots of machines and factories that release CO2 into the atmosphere
- A small amount of Co2 in the atmosphere is good, or we'd freeze to death
- With so much Co2, it traps the infrared radiation and heat, causing it to warm
 - This causes icebergs to melt, and the sea levels start rising
- This is contributing to global warming.

up

Habitable Zone

- The habitable zone is the area where liquid water on planets can be found
- If the star is hotter and bigger, then the habitable zone will be larger and farther away
- If the star is colder and smaller, the habitable zone will be smaller and closer
 In our Solar System, Earth and Mars are part of the Habitable Zone

Exoplanets

5 methods to find exoplanets

- Radial Velocity See if there is a shift in color, and if there is it means it is being acted upon by a planet
- Transit When a planet passes in front of a star.
- Direct Imaging Taking a picture, taking out the glare
- Gravitational Microlensing If light bends from its source, you know gravity is acting on it from a planet.
- Astrometry See how a star moves relative to other objects

- If you see a vertical drop in brightness, is is most likely a transit.
- To find the orbital period, you find how many times and at what days the transits repeats
 - You can find many characteristics of stars from the chart
 - Mass
 - Temperature
 - **Radius**