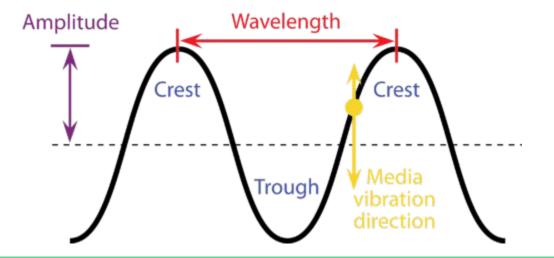
Act V Scene I-II

Wave Mechanics & Sound

By: Shant Manoukian, Jake Cook, & Youngjin Park

What's a Wave?

- A wave is a traveling vibration
- Carries energy from a vibration to the receiver
- Does not transfer matter


Wave Characteristics

- A Period(T) is the time it takes for one full cycle
 - Measured in seconds
- > A **Wavelength(\lambda)** is the distance between adjacent troughs
 - Measured in Meters
- Frequency(f) is the amount of vibrations per second (or any given time)
 - Measured in Hertz
- > F=1/T
 - Frequency = 1/Period
- Velocity is the direction and speed of a wave
 - Measured in m/s
- > V=λT
 - Velocity =Wavelength*Period

More Wave Characteristics

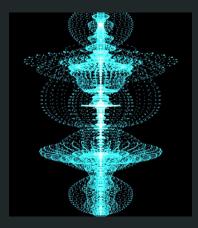
- A Crest is the high point of a wave
- > A **Trough** is the low point of a wave
- > Amplitude(A) is the distance between the crest/trough to the midpoint

Wave Speeds

- Speed of a light wave:
 - > c= 299,792 km/s (186,282 mi/s)

- Speed of a sound wave:
 - o c=1235 km/hr (343 m/s)

Sound cannot travel in a vacuum


Transverse

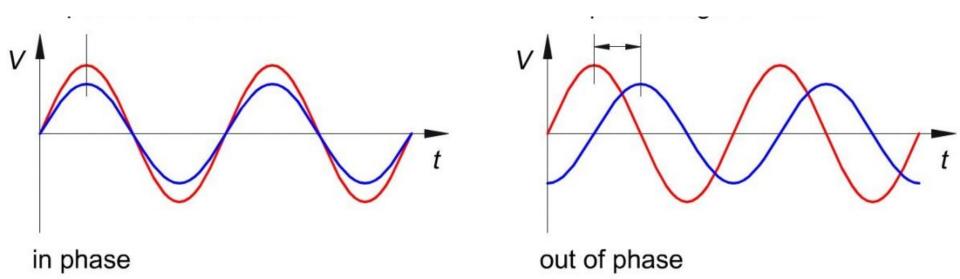
- Motion of Medium is perpendicular to direction the wave is traveling
- Some examples are ripples in water, a whip, light, and earthquake secondary waves

Longitudinal

- The motion of medium moves in the same direction of the wave
- Examples are sound waves and earthquake primary waves

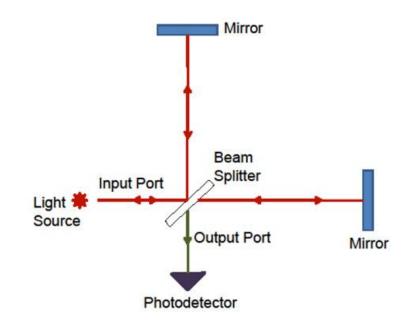
Wave Interference

- An Interference is when two or more waves run across each other
- > When parts of a wave overlap they create an interference pattern
- This causes the effect of the wave to change
 - Either increase, decrease, or stay neutral
- > When a crest interferes with another crest of another wave, the effects add up
 - This is called **Constructive Interference**
- > When a trough interferes with a crest, their effects nullify/decrease
 - This is called **Destructive Interference**
- True of all waves
 - le. sound, light, etc.


Examples of Interference **₩**, (*) / \

Constructive

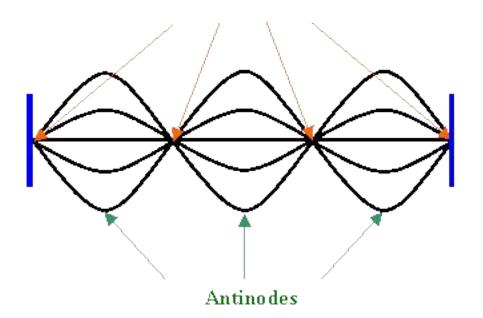
Destructive


In Phase and Out of Phase

- Phase the relationship between a wave and another point, possibly another wave (Crests and troughs line up)
- > Waves that are in phase are in synch and the crests and troughs line up
- Wave out of phase are out of synch and the crests and troughs don't line up

Interferometry

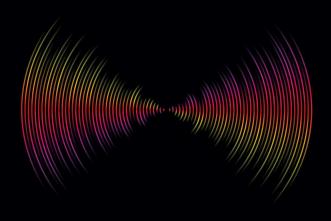
Interferometry involves strategies where you can use wave interference patterns to get information about the waves (usually light)



Standing Waves

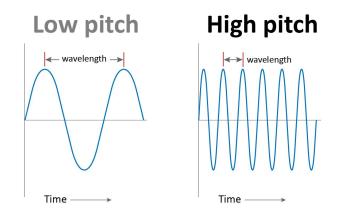
- Standing waves are "stationary waves with fixed points called nodes"
- The parts on the wave with the largest amplitudes are antinodes
 - Antinodes always occur halfway in the waves
- The fixed parts of the wave are called **Nodes**
- Standing waves are the result of interference
- Happens when two waves of same amplitude and wavelength pass through each other on opposite sides
- Nodes are always out of phase

Standing Wave


Nodes

A constant of the second second

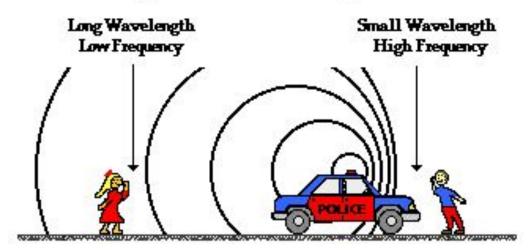
Sound


- Produced by vibrations that compress and decompress the medium around it
- Compressed areas are called Compressions
- Decompressed areas are called **Rarefactions**
- The frequency of a vibrating source is equal to the frequency of the sound waves

Sound Frequency

> **Pitch** is how our brains interpret frequency

- > High frequency ⇒ high pitch
- > Low frequency \Rightarrow low pitch
- A person can hear between 20-20,000 Hz

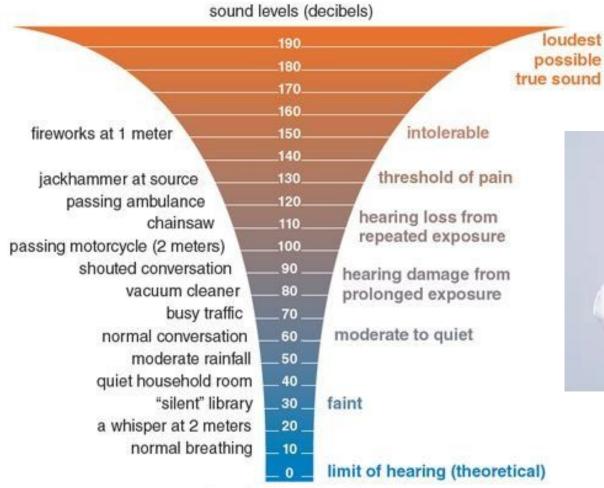


- Frequencies below 20 Hz are Infrasonic
- Frequencies above 20,000 Hz are called Ultrasonic

Doppler Effect

- The apparent change in frequency due to motion of the source.
- > Pitch is higher when the source is moving towards you
- > Pitch is lower when the source is moving away from you

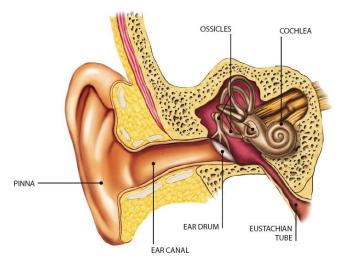
The Doppler Effect for a Moving Sound Source



Loudness

- Loudness is how our brains interpret sound intensity
 - Intensity = power/area
- > Convert Intensity to Loudness measured in decibels (dB)= β = 10 log(l₁/l₀)
 - \circ ~ I0 is always equal to 10^-12 W/m^2 $\,$
 - \circ ~~ Io ~ is the intensity of the Threshold of Sound ~
- Loudness is Logarithmic (Follows decibel scale)
- For each increase in 10 decibels, the intensity

increased by a factor of 10 db



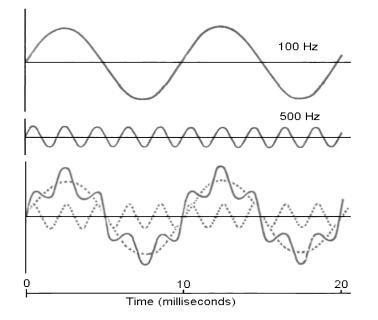
threshold of hearing

How We Hear Sound

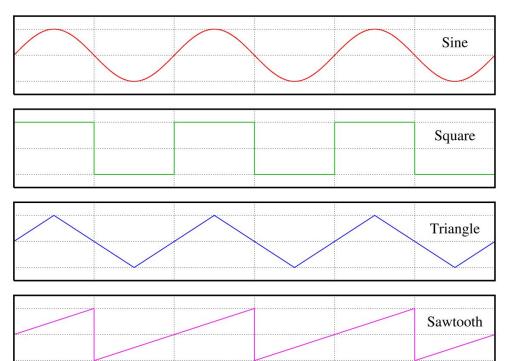
- 1. Origin of the sound vibrates
- 2. The vibration compresses and passes through a medium
- 3. Vibration pushes the air inside our ear and gets detected by our eardrum

Sound Transmission

- Sound cannot travel through a vacuum
 - \circ Need a medium to go through
- > The elasticity of the medium dictates the speed of the sound
 - In air: v=343 m/s
 - In wood: v=3300-5000
 - In water: v=1428 m/s
- ➤ Higher elasticity ⇒ faster sound wave
- This is because sound waves push the medium it travels in, and materials with high elasticity have a lot of internal energy to help retain their shape
- > Therefore, this leaves more energy for the wave to use for its kinetic motion


Sound of Music

Vibrations


- A Force Vibration is when a vibration in one medium forces another vibration in another medium
- Natural Frequency is the frequency at which the minimum amount of energy is required to produce and keep force vibrations
 - Varied depending on the shape and elasticity of the object vibrating
- Resonance happens when the force vibration and the natural frequency of an object are the same
 - Creates a huge increase in sound and amplitude
- > A strong force is needed to pull the material back to its starting position

Interference

- Both constructive and destructive interference are the same in music
- Interference with waves of different frequencies are different


Waveforms

Timbre is the tone quality or tone color of a sound wave

Harmonics

- > A Harmonic Series is the sequence off all multiples of a base frequency
- > Example:
 - Base frequency = 10 hz
 - 2nd harmonic = 20 hz
 - 3rd harmonic = 30 hz etc.
- Pitched musical instruments are built to simultaneously resonate at different frequencies
- Require standing waves

