

$\bullet \bullet \bullet$

Nicole Sorensen, Hanan Phillips, Rachel Kim

What is Light?

- Made of photons

- Energy emitted by vibrating electric charges
- Electromagnetic wave

Doppler Shift

Light moves towards you \rightarrow higher frequency \rightarrow blue (bluer) light

Light moves away from you \rightarrow lower frequency \rightarrow red (redder) light

Electromagnetic Spectrum

- Part that is visible to the human eye: Visible
 Spectrum (Very Small)
- Cannot see: Infrared (430 THz -) or Ultraviolet (770 THz +)
- All have different wavelengths and frequencies; same speed

Intensity of Light

Brightness

- Brain's interpretation of light intensity
- Measured in the unit: Lux

Luminosity Function

- The colors in which we can see the best and the worst

Light on Different Objects

- Light interacting with matter \rightarrow matter responds in different ways

- Depends on: frequency and natural frequency

- <u>Opaque Material</u>: If the frequency of light **matches** the natural frequency of electrons then object will resonate and the materials will heat up

- <u>Transparent</u> : If frequency of light **does not match** natural frequency of electrons then object is not able to sustain forced vibration

(electrons re-emit light)

Speed of Light

299,792,458 m/s

Reflection/Law of Reflection

What is reflection?

- A wave reaches a boundary between two media, and some or all of the wave bounces back into the first medium

<u>Reflection/Color</u>

- If red is reflected, we see red
- If yellow is reflected, we see yellow
- If all colors are reflected, we see white
- If all colors are absorbed, we see black

Law of Reflection

Angle of Incidence = Angle of Reflection

The angle that forms between the incidence ray and normal is equal to the angle that forms between the reflected ray and normal.

Specular Reflection	Diffuse Reflection
 SMOOTH surfaces All light is reflected in the SAME direction 	 ROUGH surfaces Light is reflected in MANY directions

Refraction/Snell's Law

- Waves deflect when they pass from one medium to another
- Index of Refraction
 - n= Speed of light in vacuum
 Speed of light in material

- Snell's law:
 - \circ nl sin θ l = n2 sin θ 2
 - Ex. 1.00029 \Box sin(30) = 1.52 \Box sin(θ_2)
- Dispersion:
 - Amount of light refracted in a medium depends on frequency
 - Light of frequencies close to natural frequency refract more

Lenses

Lens: a piece of glass that bends parallel rays of light so they cross and form an image Converging lens

Diverging lens

Magnification occurs when an image is viewed through a wider angle with the igodol

lens than without one

Particle vs Wave Debate

Is light a wave or a particle?

- Newton Particle
- Huygens Wave

Thomas Young used **diffraction**

(double-slit experiment)

CONCLUSION - NEITHER!

