Nonlinear Motion
Note: Use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$
Vector - do magnitude and angle (in degrees) from starting point

1. You walk 7 miles south and 3 miles west. What is your displacement from your starting point?
2. A child is playing with a toy car on the floor of a train that is moving eastward. While the train travels $12.0 \mathrm{~m} / \mathrm{s}$, the child pushes the car $2.6 \mathrm{~m} / \mathrm{s}$
northward on the floor of the train. What is the resulting displacement of the car?
3. Find the vector sum of $3.5 \mathrm{~m} / \mathrm{s}$ east and $5.8 \mathrm{~m} / \mathrm{s}$ south. Give both magnitude and direction of the sum.
4. A plane is headed directly east at $220 \mathrm{~m} / \mathrm{s}$ when the wind is from the south at $15 \mathrm{~m} / \mathrm{s}$. What is the velocity with respect to the ground?
5. You are exercising by running around the deck of an ocean liner traveling west at $18.5 \mathrm{~m} / \mathrm{s}$. What is your total velocity if you are running across the ship, going south at $7.3 \mathrm{~m} / \mathrm{s}$?
6. You want to drive your motorboat directly across a stream that flows at $3.5 \mathrm{~m} / \mathrm{s}$ and you know that your boat can do $4.6 \mathrm{~m} / \mathrm{s}$ in still water. Find (a) The angle up stream that the boat must point
(b) the resulting speed of the boat in the cross-stream direction.
7. In a plane that goes $310 \mathrm{~m} / \mathrm{s}$ the pilot wants to fly directly north when the wind is blowing at $55 \mathrm{~m} / \mathrm{s}$ from the east.
(a) In what direction must he head the plane?
(b) How fast will the plane end of going?

Component Parts

1. You are driving along at $20 \mathrm{~m} / \mathrm{s}$ on a road that heads at an angle of $25^{\circ} \mathrm{W}$ of N .
(a) At what rate are you going N
(b) At what rate are you going W ?
2. An airplane descending to the runway at $250 \mathrm{~m} / \mathrm{s}$ is going at an angle of 22° with the horizontal. Find (a) Its horizontal velocity
(b) Its rate of descent.
3. You are going $20 \mathrm{~m} / \mathrm{s}$ up a hill that makes an angle of 12° with the horizontal. How fast are you going (a) Horizontally
(b) Vertically?
