## Problem

12. A $40-\mathrm{kg}$ football player leaps through the air to collide with and tackle a $50-\mathrm{kg}$ player heading toward him, also in the air. If the $40-\mathrm{kg}$ player is heading to the right at $9 \mathrm{~m} / \mathrm{s}$ and the $50-\mathrm{kg}$ player is heading toward the left at $2 \mathrm{~m} / \mathrm{s}$, what is the speed and direction of the tangled players?
13. A $5-\mathrm{kg}$ blob of clay moving horizontally at $4 \mathrm{~m} / \mathrm{s}$ has a head-on collision with a $4-\mathrm{kg}$ blob of clay that moves toward it at $2 \mathrm{~m} / \mathrm{s}$. What is the speed of the two blobs stuck together immediately after the collision?
14. A $70-\mathrm{kg}$ free-floating astronaut fires $0.10-\mathrm{kg}$ of gas at a speed of $30 \mathrm{~m} / \mathrm{s}$ from her propulsion pistol. What is the astronaut's recoil speed?
15. What velocity must a 1340 kg car have in order to have the same momentum as a 2680 kg truck traveling at a velocity of $15 \mathrm{~m} / \mathrm{s}$ to the west?
16. A cricket ball with a mass of 0.11 kg moves at a speed of $12 \mathrm{~m} / \mathrm{s}$. Then the ball is hit by a bat and rebounds in the opposite direction at a speed of $15 \mathrm{~m} / \mathrm{s}$. What is the change in momentum of the ball?
17. A train with a mass of $1.8 \times 10^{3} \mathrm{~kg}$ is moving at $15 \mathrm{~m} / \mathrm{s}$ when the engineer applies the brakes. If the braking force is constant at $3.5 \times 10^{4} \mathrm{~N}$, how long does it take the train to stop? How far does the train travel during this time?
18. A 65.0 kg ice-skater standing on frictionless ice throws a 0.15 kg snowball horizontally at a speed of $32.0 \mathrm{~m} / \mathrm{s}$. At what speed does the skater move backward?

## PROBLEM

12. $2.9 \mathrm{~m} / \mathrm{s}$ toward the right
13. $1.3 \mathrm{~m} / \mathrm{s}$
14. $0.04 \mathrm{~m} / \mathrm{s}$
15. $30 \mathrm{~m} / \mathrm{s}$ to the west

Given
$m_{1}=2680 \mathrm{~kg}$
$\mathbf{v}_{\mathbf{1}}=15 \mathrm{~m} / \mathrm{s}$ to the west
$m_{2}=1340 \mathrm{~kg}$

## Solution

$m_{1} \mathbf{v}_{\mathbf{1}}=m_{2} \mathbf{v}_{2}$
$\mathbf{v}_{\mathbf{2}}=\frac{m_{1} \mathbf{v}_{\mathbf{1}}}{m_{2}}=\frac{\left(2.68 \times 10^{3} \mathrm{~kg}\right)(15 \mathrm{~m} / \mathrm{s} \text { west })}{\left(1.34 \times 10^{3} \mathrm{~kg}\right)}=3.0 \times 10^{1} \mathrm{~m} / \mathrm{s}$ west
16. $-3.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

Given
$m=0.11 \mathrm{~kg}$
$v_{i}=12 \mathrm{~m} / \mathrm{s}$
$v_{f}=-15 \mathrm{~m} / \mathrm{s}$
Solution
$\Delta p=m\left(v_{f}-v_{i}\right)=(0.11 \mathrm{~kg})(-15 \mathrm{~m} / \mathrm{s}-12 \mathrm{~m} / \mathrm{s})=-3.0 \mathrm{kgm} / \mathrm{s}$
17. $77 \mathrm{~s} ; 5.8 \times 10^{2} \mathrm{~m}$

## Given

$m=1.8 \times 10^{5} \mathrm{~kg}$
$v_{i}=15 \mathrm{~m} / \mathrm{s}$
$v_{f}=0 \mathrm{~m} / \mathrm{s}$
$F=-3.5 \times 10^{4} \mathrm{~N}$
Solution
$\mathbf{F} \Delta t=\Delta \mathbf{p}$

$$
\begin{aligned}
& \Delta t=\frac{\Delta p}{F}=\frac{m\left(v_{f}-v_{i}\right)}{F}=\frac{\left(1.8 \times 10^{5} \mathrm{~kg}\right)(0 \mathrm{~m} / \mathrm{s}-15 \mathrm{~m} / \mathrm{s})}{-3.5 \times 10^{4} \mathrm{~N}}=77 \mathrm{~s} \\
& \Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right) \Delta t=\frac{1}{2}(15 \mathrm{~m} / \mathrm{s}+0 \mathrm{~m} / \mathrm{s})(77 \mathrm{~s})=5.8 \times 10^{2} \mathrm{~m}
\end{aligned}
$$

18. $7.4 \times 10^{-2} \mathrm{~m} / \mathrm{s}$

Given
$m_{1}=0.15 \mathrm{~kg}$
$m_{2}=65.0 \mathrm{~kg}$
$v_{1, i}=v_{2, i}=0 \mathrm{~m} / \mathrm{s}$
$v_{1, f}=32 \mathrm{~m} / \mathrm{s}$

## Solution

$$
\begin{aligned}
& m_{1} \mathbf{v}_{\mathbf{1 , \mathbf { i }}}+m_{2} \mathbf{v}_{2, \mathbf{i}}=m_{1} \mathbf{v}_{\mathbf{1 , f}}+m_{2} \mathbf{v}_{2, \mathrm{f}}=0 \\
& m_{2} \mathbf{v}_{\mathbf{2 , f}}=-m_{1} \mathbf{v}_{\mathbf{1 , f}} \\
& \mathbf{v}_{\mathbf{2 , f}}=-\frac{m_{1} \mathbf{v}_{\mathbf{1}, \mathrm{f}}}{m_{2}}=-\frac{(0.15 \mathrm{~kg})(32 \mathrm{~m} / \mathrm{s})}{65.0 \mathrm{~kg}}=-7.4 \times 10^{-2} \mathrm{~m} / \mathrm{s}=7.4 \times 10^{-2} \mathrm{~m} / \mathrm{s} \text { backward }
\end{aligned}
$$

