MAGNETISM

Review

QUESTION 1

- A proton speeding through a synchrotron at $3.0 \times 107 \mathrm{~m} / \mathrm{s}$ experiences a magnetic field of 3.0 T that is produced by the steering magnets in the synchrotron. What is the magnetic force pulling on the proton?

QUESTION 1

- A proton speeding through a synchrotron at $3.0 \times 107 \mathrm{~m} / \mathrm{s}$ experiences a magnetic field of 3.0 T that is produced by the steering magnets in the synchrotron. What is the magnetic force pulling on the proton?
- Answer: $1.4 \times 10^{-I I} \mathrm{~N}$

QUESTION 2

- A 0.90 m long straight wire on board the Voyager spacecraft carries a current of o.io A perpendicular to Jupiter's strong magnetic field of $5.0 \times 10^{-4} \mathrm{~T}$. What is the magnitude of the magnetic force experienced by the wire?

QUESTION 2

- A 0.90 m long straight wire on board the Voyager spacecraft carries a current of o.io A perpendicular to Jupiter's strong magnetic field of $5.0 \times 10^{-4} \mathrm{~T}$. What is the magnitude of the magnetic force experienced by the wire?
- Answer: $4.5 \times 10^{-5} \mathrm{~N}$

QUESTION 3

- At the equator where the Earth's $3.0 \times \mathrm{IO}^{-5} \mathrm{~T}$ magnetic field is parallel to the surface of the Earth, Emma is spinning her wedding ring, which has a diameter of 2.0 cm , on top of the table. What is the change in flux through the ring if Emma spins it on its edge?

QUESTION 3

* At the equator where the Earth's $3.0 \times \mathrm{IO}^{-5} \mathrm{~T}$ magnetic field is parallel to the surface of the Earth, Emma is spinning her wedding ring, which has a diameter of 2.0 cm , on top of the table. What is the change in flux through the ring if Emma spins it on its edge?
- Answer: $9.4 \times 10^{-9} \mathrm{~Wb}$

QUESTION 4

- In Fred's color TV, electrons are shot toward the screen through a \quad. $0 \times 10^{-3} \mathrm{~T}$ magnetic field set up in the picture tube. If the electrons each experiences a magnetic force of $3.5 \times 10^{-15} \mathrm{~N}$, at what speed are they propelled through the picture tube?

QUESTION 4

- In Fred's color TV, electrons are shot toward the screen through a $1.0 \times 10^{-3} \mathrm{~T}$ magnetic field set up in the picture tube. If the electrons each experiences a magnetic force of $3.5 \times 10^{-15} \mathrm{~N}$, at what speed are they propelled through the picture tube?
- Answer: $2.2 \times 10^{7} \mathrm{~m} / \mathrm{s}$

QUESTION 5

- Niagara Falls sends 3,0oo V to a step-up transformer that sends $120,000 \mathrm{~V}$ to homes in NYC. If there are 2,000 loops in the primary end of the transformer, how many loops are in the secondary?

QUESTION 5

- Niagara Falls sends 3,000 V to a step-up transformer that sends $120,000 \mathrm{~V}$ to homes in NYC. If there are 2,000 loops in the primary end of the transformer, how many loops are in the secondary?
- Answer: 80,00o loops

QUESTION 6

- A 6 loop coil of wire is placed in a magnetic field the oscillates between i.o T and 6.0 T every 5.0 s . If the coil has a radius of 7.3 cm , what is the induced voltage across it?

QUESTION 6

- A 6 loop coil of wire is placed in a magnetic field the oscillates between i.o T and 6.0 T every 5.0 s . If the coil has a radius of 7.3 cm , what is the induced voltage across it?
- Answer: o.io V

QUESTION 7

- How much current is flowing in a wire 4.20 m long if the maximum force on it is 0.900 N when placed in a uniform 0.800 T field?

QUESTION 7

- How much current is flowing in a wire 4.20 m long if the maximum force on it is 0.900 N when placed in a uniform 0.800 T field?
- Answer: 0.268 A

QUESTION 8

* What is the magnitude and direction of the magnetic

$$
\mathrm{I}=3.7 \mathrm{~A}
$$ field 4.9 cm to the right of the wire due to the flow of current as depicted to the right?

QUESTION 8

- What is the magnitude and direction of the magnetic

$$
\mathrm{I}=3.7 \mathrm{~A}
$$ field 4.9 cm to the right of the wire due to the flow of current as depicted to the right?

- Answer: 1.5×10^{-5} Tinto

QUESTION 9

- A magnetic resonance imager (MRI) machine uses magnetic fields to image the inside of the human body. Sarah is undergoing an MRI procedure and is placed inside a chamber housing the coil of a large electromagnet that has an diameter of 0.510 m . A flux of 0.307 Wb passes through the coil opening. What is the magnetic field inside the coil?

QUESTION 9

- A magnetic resonance imager (MRI) machine uses magnetic fields to image the inside of the human body. Sarah is undergoing an MRI procedure and is placed inside a chamber housing the coil of a large electromagnet that has an diameter of 0.510 m . A flux of 0.307 Wb passes through the coil opening. What is the magnetic field inside the coil?
- Answer: 1.5 T

QUESTION 10

- An electron is accelerated through a potential difference of V. What is the potential difference necessary to give the electron a speed of $\mathrm{I} .9 \times \mathrm{IO}^{8}$ m / s ? $\left(\mathrm{q}=-\mathrm{I} .6 \times 1 \mathrm{O}^{-19} \mathrm{C} ; \mathrm{m}=9.1 \mathrm{I} \times \mathrm{IO}^{-3 \mathrm{r}} \mathrm{kg}\right.$)

QUESTION 10

- An electron is accelerated through a potential difference of V. What is the potential difference necessary to give the electron a speed of $\mathrm{I} .9 \times \mathrm{IO}^{8}$ m / s ? $\left(\mathrm{q}=-\mathrm{I} .6 \times \mathrm{IO}^{-19} \mathrm{C} ; \mathrm{m}=9 . \mathrm{II} \times \mathrm{IO}^{-3 \mathrm{ra}} \mathrm{kg}\right.$)
- Answer: $1.0 \times 105 \mathrm{~V}$

QUESTION 11

- A proton enters a 4.5 T magnetic field at $2.3 \times \mathrm{IO}^{8}$ m / s perpendicular to the field. What is the radius of the circular path of the electron? $\left(\mathrm{m}=\mathrm{I} .67 \times \mathrm{IO}^{-27}\right.$ kg)

QUESTION 11

- A proton enters a 4.5 T magnetic field at 2.3×10^{8} m / s perpendicular to the field. What is the radius of the circular path of the electron? $\left(\mathrm{m}=\mathrm{I} .67 \times \mathrm{IO}^{-27}\right.$ kg)
- Answer: 53 cm

QUESTION 12

- In the picture to the right, an alpha particle zips along

$$
I=6.3 A
$$ 23 mm away from the current-carrying wire.

What is the magnitude and direction of the force on the alpha particle due to the magnetic field of the wire?

$$
\mathrm{v}=\mathrm{I} .8 \times 1 \mathrm{O}^{7} \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{q}=+3.2 \times 10^{-19} \mathrm{C}
$$

QUESTION 12

* In the picture to the right, an alpha particle zips along
$I=6.3 A$
23 mm away from the
current-carrying wire. What
is the magnitude and
direction of the force on the alpha particle due to the
$\mathrm{I}=6.3 \mathrm{~A}$ magnetic field of the wire?
- Answer: $3.2 \times 10^{-16} \mathrm{~N}$ left

$$
\mathrm{V}=\mathrm{I} .8 \times 1 \mathrm{O}^{7} \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{q}=+3.2 \times 10^{-19} \mathrm{C}
$$

QUESTION 13

- The diagram shows the magnetic field lines
between two magnetic poles, A and B. Describe the polarity of magnetic poles A and B.

QUESTION 13

* The diagram shows the magnetic field lines
between two magnetic poles, A and B. Describe the polarity of magnetic poles A and B.
- Answer: A is north, B is south

QUESTION 14

* A 5.0 m stretch of wire carrying 3.7 A of current and laying in a 2.2 T magnetic field experiences 24 N of force. What is the angle between the magnetic field and the wire?

QUESTION 14

- A 5.0 m stretch of wire carrying 3.7 A of current and laying in a 2.2 T magnetic field experiences 24
N of force. What is the angle between the magnetic field and the wire?
- Answer: 36° or 0.63 rad

QUESTION 15

- An 8 loop coil of wire experiences a flux that oscillates at $1.5 \mathrm{~Wb} / \mathrm{s}$. If the wire has a resistance of io Ω, how much current is pushed through the wire?

QUESTION 15

- An 8 loop coil of wire experiences a flux that oscillates at $1.5 \mathrm{~Wb} / \mathrm{s}$. If the wire has a resistance of io Ω, how much current is pushed through the wire?
- Answer: I. 2 A

QUESTION 16

- In a transformer, the power used by the primary and secondary is always the same. A step-up transformer increases 16 V to 120 V . What is the current in the secondary as compared to the primary? (Assume ioo\% efficiency)

QUESTION 16

- In a transformer, the power used by the primary and secondary is always the same. A step-up transformer increases 16 V to 120 V . What is the current in the secondary as compared to the primary? (Assume roo\% efficiency)
* Answer: $I_{s}=7.5 I_{p}$

