

General Physics

Linear Motion

"Life is in infinite motion; at the same time it is motionless."

— Debasish Mridha

High Throw

* How high can a human throw something?

Mechanics

- * The study of motion
- * Kinematics
 - * Description of how things move
- * Dynamics
 - * Description of why things move

Reference Frames

- * What does it mean to be motionless?
- * Sitting there in your seat, you're not moving, right?
- * BUT! the Earth is rotating about its axis at 1,500 km/h
- * and orbiting around the Sun at 107,000 km/h
- * which itself orbiting around the supermassive blackhole at the center of the galaxy at **792,000 km/h**
- * in an ever-expanding Universe (another 2.1 million km/h!)

It's All Relative

- * A train zips past a train station at 80 km/h
- While standing on the train, you throw a baseball at 20 km/h
- * From the reference frame of you and the train, the ball leaves you at 20 km/h
- * But from the reference frame of your friend at the train station, the ball is moving at 80 km/h + 20 km/h = 100 km/h!
- * Both are equally valid observations of the baseball, it all just depends on the reference frame you pick

It's All Relative

- * Likewise, there's no point in me telling you "Disneyland is 40 km away" unless I specify 40 km away from where
- * Also, 40 km in what direction?

Lab Frame

- * Often in science, we implicitly choose the reference frame to be what we call the *lab frame*
- * For our purposes, that will mean relative to this room we are sitting in right now
- * Good to get comfortable with changing between reference frames

* Little Sally leaves her home, walks 40 m north

* Little Sally leaves her home, walks 40 m north, **30 m east**

* Little Sally leaves her home, walks 40 m north, 30 m east, and 20 m south

- * Little Sally leaves her home, walks 40 m north, 30 m east, and 20 m south
- * How far did Little Sally travel?

$$*40 \text{ m} + 30 \text{ m} + 20 \text{ m} = 90 \text{ m}$$

* This is the *distance* she traveled

- * Little Sally leaves her home, walks 40 m north, 30 m east, and 20 m south
- * How far is Sally from home?
- $\sqrt{(20^2+30^2)}=36 \text{ m}$
- * In what direction?
- * $tan^{-1}(20/30) = 34^{\circ}$ North of East
- * 36 m @ 34° N of E
- * This is Sally's displacement

Scalars vs. Vectors

- * Scalars only includes magnitude
 - * E.g. distance is a scalar quantity
- Vectors include both magnitude and direction
 - * E.g. displacement is a vector quantity

- * Both refer to how fast an object is moving
- * Average speed
 - * distance traveled divided by the time it takes to travel this distance
 - * average speed = <u>distance traveled</u> time elapsed

- * **Velocity** signifies both the *magnitude* of how fast an object is moving and the *direction* in which it is moving
- * Average velocity
 - total displacement divided by time
 - * average velocity = <u>displacement</u> time elapsed

* Let's say it took Little Sally 70 s to complete her journey

- * Let's say it took Little Sally 70 s to complete her journey
- * average speed = <u>distance</u> time

- * Let's say it took Little Sally 70 s to complete her journey
- * average speed = $\frac{\text{distance}}{\text{time}} = \frac{90 \text{ m}}{70 \text{ s}}$

- * Let's say it took Little Sally 70 s to complete her journey
- * average speed = $\frac{\text{distance}}{\text{time}} = \frac{90 \text{ m}}{70 \text{ s}} = 1.3 \text{ m/s}$

- Let's say it took Little Sally 70 s to complete her journey
- * average speed = $\frac{\text{distance}}{\text{time}} = \frac{90 \text{ m}}{70 \text{ s}} = 1.3 \text{ m/s}$

* average velocity = <u>displacement</u> time

- Let's say it took Little Sally 70 s to complete her journey
- * average speed = $\frac{\text{distance}}{\text{time}} = \frac{90 \text{ m}}{70 \text{ s}} = 1.3 \text{ m/s}$

* average velocity = $\frac{\text{displacement}}{\text{time}} = \frac{36 \text{ m}}{70 \text{ s}}$

- Let's say it took Little Sally 70 s to complete her journey
- * average speed = $\frac{\text{distance}}{\text{time}} = \frac{90 \text{ m}}{70 \text{ s}} = 1.3 \text{ m/s}$
- * average velocity = $\frac{\text{displacement}}{\text{time}} = \frac{36 \text{ m}}{70 \text{ s}} = 0.51 \text{ m/s}$

First Equation of the Year!

$$v = \Delta x \\ \Delta t$$

Example Number 1

- * Sonic, the world's fastest hedgehogTM, is escaping from the city
- * During a 3.00 s time interval, Sonic moves from being 30.0 m away from the city to 1,060 m away
- * What is Sonic's average velocity?
- * Ans. 343 m/s

Example Number 2

- * Miles "Tails" Prower flies towards the city to try to find Sonic
- During a 5.00 s interval, Tails moves from being 2,540 m away from the city to being 2,330 m away
- * What is Tails' average velocity?
- * Ans. -42.0 m/s

Ejemplo Numero 3

- * Geralt of Rivia rides atop his stallion at 48 km/h for 2.5 h
- * How far has he travelled in that time?
- * Ans. 120 km

Instantaneous Velocity

- * You are in a car heading downtown, as you can see from the speedometer your speed is 40 mi/h.
- * Downtown is 10 miles away at this speed, how long will it take you?
- * IS THIS TRUE???

Average Velocity

* It would take us a lot longer than 15 minutes to drive downtown because of the traffic where we have to slow, stop, start, accelerate, slow, stop, etc., etc.,

- * Going in a straight line at the same speed is called **Constant Velocity**.
- * But if we change our speed (brake at a light) or our direction (turn a corner) then we have a **Changing Velocity**
- Changing our speed or direction is Acceleration

* Acceleration is how quickly velocity changes

$$a = \underline{\Delta v}$$

$$\underline{\Delta t}$$

- * When we accelerate in a car from rest to 75 km/h in 5 s
- * a = (75 km/h 0 km/h)/(5 s)= 15 km/h/s

- * To convert to SI units, change km/h over to m/s
- $*75 \, \text{km/h} = 21 \, \text{m/s}$
- * a = (21 m/s 0 m/s)/(5 s)= 4.2 m/s^2

Example 4

- * Brian O'Connor is driving at 54 m/s before deciding he is driving way too fast and a little too furiously
- * He slows the car to a reasonable 35 m/s in 5.0 s
- * What is O'Connor's average acceleration?
- * Ans. -3.8 m/s^2

- * Acceleration also applies to changes in direction.
- * We feel the effects when in a car we are pushed to the side when we turn a sharp corner

Sanity Check

- * If the instantaneous velocity of an object is zero, does it mean that the instantaneous acceleration is zero?
- * If the instantaneous acceleration is zero, does it mean that the instantaneous velocity is zero?
 - * Answer: not necessarily
- * Can you think of examples?

Motion at Constant Acceleration

- * If acceleration is constant (which in many practical situations it is), then average and instantaneous acceleration are the same
- * Can use this fact to derive some pretty convenient relationships between acceleration, velocity, and position with respect to time

Motion at Constant Acceleration

$$* a = \underline{\Delta v} = \underline{v_f - v_i} \\ \underline{\Delta t}$$

$$\longrightarrow v_f = v_i + a\Delta t$$

$$v = \underline{\Delta x} = \underline{x_f - x_i}$$

$$\underline{\Delta t}$$

$$\longrightarrow x_f = x_i + v\Delta t$$

Motion at Constant Acceleration

- * With a little simple calculus, can find acceleration's contribution to a change in position
- $x_f = x_i + v_i \Delta t + \frac{1}{2} a \Delta t^2$
- $v_f^2 = v_i^2 + 2a\Delta x$
- * (For the full derivation check out http://physics.info/kinematics-calculus/)

Kinematic Equations

$$v_f = v_i + a\Delta t$$

$$x_f = x_i + v_i \Delta t + \frac{1}{2} a \Delta t^2$$

$$v_f^2 = v_i^2 + 2a\Delta x$$

* Important note: these equations are only valid under constant acceleration

- * You are designing an airport for small planes. One kind of airplane that might use this airfield must reach a speed before takeoff of at least 27.8 m/s (100 km/h) and can accelerate at 2.00 m/s². If the runway is 150 m long, can this plane speed to take off?
- * Ans. No
- * What minimum length must the runway have?
- * Ans. 193 m

- * How long does it take a car to cross a 30.0-m-wide intersection after the light turns green if it accelerates from rest at a constant 2.00 m/s²?
- * Ans. 5.48 s

- * Minimum stopping distance is important in traffic design. The average human reaction time is 0.22 s, meaning there is a 0.22 s delay between when one decides to break and when he or she actually begins breaking. A typical car can decelerate at 6.0 m/s² in good conditions. Knowing this, calculate the total stopping distance in meters for a vehicle is traveling at 100. km/h.
- * Ans. 71 m

- * A baseball pitcher throws a fastball with a speed of 44 m/s. If the pitcher accelerates the ball through a displacement of about 3.5 m before releasing it, estimate the average acceleration of the ball during the throwing motion.
- * Ans. 280 m/s^2

- * You want to design an air-bag system that can protect the driver in a head-on collision at a speed of 100 km/h. If the car crumples upon impact over a distance of about 1 m, how much time does the air bag have to inflate in order to effectively protect the driver?
- * Ans. less than 0.07 s

- * All object accelerate towards the Earth under the force of gravity
 - * Accelerate so they will pick up speed as they descend

- Up through the 16th Century, most people's intuition about freefall centered around the teachings of Aristotle
 - * "bodies of different weight [...]
 move in one and the same
 medium with different speeds
 which stand to one another in
 the same ratio as the weights; so
 that, for example, a body which
 is ten times as heavy as another
 will move ten times as rapidly
 as the other."

- * Galileo Galilei was the first scientific mind to challenge this commonly help belief
- * Dropped masses off the edge of the Leaning Tower of Pisa

- * Acceleration due to gravity acts on all objects the same regardless of their mass
 - Any observed differences are on account of air resistance

https://www.youtube.com/watch?v=E43-CfukEgs

- * How fast, exactly, does gravity accelerate objects here on Earth?
- * Actual value:
 - $g = 9.81 \text{ m/s}^2$
- * Only the acceleration due to gravity here on Earth
- Varies slightly depending on latitude and elevation

- * Saruman is conducting physics experiments from atop the Tower of Orthanc.
- * If he drops a ball from the peak of his 150-m-tall fortress, how far will the ball have fallen after 1.00 s, 2.00 s, and 3.00 s? (Neglect air resistance)
- * Ans. 4.90 m
- * 19.6 m
- * 44.1 m

- * Wishing to take things a step further, the White Wizard instead *throws* the ball downward with an initial velocity of 3.00 m/s.
- * What would be the ball's position and speed after 1.00 s and 2.00 s?
- * Ans @ 1.00 s: 7.90 m, 12.8 m/s
- * @ 2.00 s: 25.6 m, 22.6 m/s

- * Feeling ambitious, Saruman now throws the ball *upward* at 3.00 m/s.
- * How high does the ball go?
 - * Ans. 0.458 m
- * How long is the ball in the air before it comes back to his hand?
 - * 0.612 s
- * What is the ball's velocity when it comes back to his hand?
 - * -3.00 m/s

* How high can a human throw something?

* How to throw the ball upward?

- * A person with a reasonably good arm can throw a baseball at about 32 m/s (72 mph)
- * Let's assume that, thanks to air resistance, you'll only get the ball about 50% as high as you would in a vacuum
- * How high can you throw the ball?
 - * Answer: 26 m
- * The average giraffe is about 5 m tall. What's the height of your throw in units of giraffes?
 - * Answer: just over 5 giraffes

- * The world record for fastest baseball pitch belongs to Aroldis Chapman, clocking in at 47 m/s (105 mph)
- * How high (in giraffes) could he hypothetically launch a baseball?
 - * Answer: just over 11 giraffes

* What could you change to throw even *higher*?

