

General Physics

Linear Motion

"Life is in infinite motion; at the same time it is motionless."
— Debasish Mridha

High Throw

* How high can a human throw something?

Mechanics

* The study of motion
* Kinematics
* Description of how things move
- Dynamics
* Description of why things move

Reference Frames

* What does it mean to be motionless?
* Sitting there in your seat, you're not moving, right?
* BUT! the Earth is rotating about its axis at $\mathbf{1 , 5 0 0} \mathbf{~ k m} / \mathrm{h}$
* and orbiting around the Sun at $\mathbf{1 0 7 , 0 0 0} \mathbf{k m} / \mathrm{h}$
* which itself orbiting around the supermassive blackhole at the center of the galaxy at $792,000 \mathrm{~km} / \mathrm{h}$
* in an ever-expanding Universe (another 2.1 million $\mathbf{k m} / \mathbf{h}!$)

It's All Relative

* A train zips past a train station at $80 \mathrm{~km} / \mathrm{h}$
* While standing on the train, you throw a baseball at $20 \mathrm{~km} / \mathrm{h}$
* From the reference frame of you and the train, the ball leaves you at $20 \mathrm{~km} / \mathrm{h}$
* But from the reference frame of your friend at the train station, the ball is moving at $80 \mathrm{~km} / \mathrm{h}+20 \mathrm{~km} / \mathrm{h}=100 \mathrm{~km} / \mathrm{h}$!
* Both are equally valid observations of the baseball, it all just depends on the reference frame you pick

It's All Relative

* Likewise, there's no point in me telling you "Disneyland is 40 km away" unless I specify 40 km away from where
* Also, 40 km in what direction?

Lab Frame

* Often in science, we implicitly choose the reference frame to be what we call the lab frame
* For our purposes, that will mean relative to this room we are sitting in right now
* Good to get comfortable with changing between reference frames

Distance vs. Displacement

* Little Sally leaves her home, walks 40 m north

Distance vs. Displacement

* Little Sally leaves her home, walks 40 m north, 30 m east

Distance vs. Displacement

* Little Sally leaves her home, walks 40 m north, 30 m east, and 20 m south

Distance vs. Displacement

* Little Sally leaves her home, walks 40 m north, 30 m east, and 20 m south
* How far did Little Sally travel?
*. $40 \mathrm{~m}+30 \mathrm{~m}+20 \mathrm{~m}=90 \mathrm{~m}$
* This is the distance she traveled

Distance vs. Displacement

* Little Sally leaves her home, walks 40 m north, 30 m east, and 20 m south
* How far is Sally from home?
* $\sqrt{ }\left(20^{2}+30^{2}\right)=36 \mathrm{~m}$
* In what direction?
* $\tan ^{-1}(20 / 30)=34^{\circ}$ North of East
- $36 \mathrm{~m} @ 34^{\circ} \mathrm{N}$ of E
* This is Sally's displacement

Scalars vs. Vectors

* Scalars only includes magnitude
* E.g. distance is a scalar quantity
- Vectors include both magnitude and direction
* E.g. displacement is a vector quantity

Speed vs. Velocity

* Both refer to how fast an object is moving
* Average speed
* distance traveled divided by the time it takes to travel this distance
* average speed $=\underline{\text { distance traveled }}$ time elapsed

Speed vs. Velocity

- Velocity signifies both the magnitude of how fast an object is moving and the direction in which it is moving
* Average velocity
* total displacement divided by time
* average velocity $=\frac{\text { displacement }}{\text { time elapsed }}$

Speed vs. Velocity

* Let's say it took Little Sally 70 s to complete her journey

Speed vs. Velocity

* Let's say it took Little Sally 70 s to complete her journey
* average speed $=\underline{\text { distance }}$
time

Speed vs. Velocity

* Let's say it took Little Sally 70 s to complete her journey
* average speed $=\frac{\text { distance }}{\text { time }}=\frac{90 \mathrm{~m}}{70 \mathrm{~s}}$

Speed vs. Velocity

* Let's say it took Little Sally 70 s to complete her journey
* average speed $=\frac{\text { distance }}{\text { time }}=\frac{90 \mathrm{~m}}{70 \mathrm{~s}}=1.3 \mathrm{~m} / \mathrm{s}$

Speed vs. Velocity

* Let's say it took Little Sally 70 s to complete her journey
* average speed $=\frac{\text { distance }}{\text { time }}=\frac{90 \mathrm{~m}}{70 \mathrm{~s}}=1.3 \mathrm{~m} / \mathrm{s}$
* average velocity $=\frac{\text { displacement }}{\text { time }}$

Speed vs. Velocity

* Let's say it took Little Sally 70 s to complete her journey
* average speed $=\frac{\text { distance }}{\text { time }}=\frac{90 \mathrm{~m}}{70 \mathrm{~s}}=1.3 \mathrm{~m} / \mathrm{s}$
* average velocity $=\frac{\text { displacement }}{\text { time }}=\frac{36 \mathrm{~m}}{70 \mathrm{~s}}$

Speed vs. Velocity

* Let's say it took Little Sally 70 s to complete her journey
* average speed $=\frac{\text { distance }}{\text { time }}=\frac{90 \mathrm{~m}}{70 \mathrm{~s}}=1.3 \mathrm{~m} / \mathrm{s}$
* average velocity $=\frac{\text { displacement }}{\text { time }}=\frac{36 \mathrm{~m}}{70 \mathrm{~s}}=0.51 \mathrm{~m} / \mathrm{s}$

First Equation of the Year!

$v=\frac{\Delta x}{\Delta t}$

Example Number 1

* Sonic, the world's fastest hedgehog ${ }^{\mathrm{TM}}$, is escaping from the city
* During a 3.00 s time interval, Sonic moves from being 30.0 m away from the city to $1,060 \mathrm{~m}$ away
* What is Sonic's average velocity?
* Ans. $343 \mathrm{~m} / \mathrm{s}$

Example Number 2

*Miles "Tails" Prower flies towards the city to try to find Sonic

* During a 5.00 s interval, Tails moves from being 2,540 m away from the city to being $2,330 \mathrm{~m}$ away
*What is Tails' average velocity?
* Ans. $-42.0 \mathrm{~m} / \mathrm{s}$

Ejemplo Numero 3

* Geralt of Rivia rides atop his stallion at $48 \mathrm{~km} / \mathrm{h}$ for 2.5 h
* How far has he travelled in that time?
- Ans. 120 km

Instantaneous Velocity

* You are in a car heading downtown, as you can see from the speedometer your speed is $40 \mathrm{mi} / \mathrm{h}$.
* Downtown is 10 miles away at this speed, how long will it take you?
* IS THIS TRUE???

Average Velocity

* It would take us a lot longer than 15 minutes to drive downtown because of the traffic where we have to slow, stop, start, accelerate, slow, stop, etc., etc,.

Acceleration

* Going in a straight line at the same speed is called Constant Velocity.
* But if we change our speed (brake at a light) or our direction (turn a corner) then we have a Changing Velocity
* Changing our speed or direction is Acceleration

Acceleration

* Acceleration is how quickly velocity changes
* $\mathrm{a}=\frac{\Delta v}{\Delta \mathrm{t}}$
* When we accelerate in a car from rest to $75 \mathrm{~km} / \mathrm{h}$ in 5 s

$$
\begin{aligned}
\text { * } \mathrm{a} & =(75 \mathrm{~km} / \mathrm{h}-0 \mathrm{~km} / \mathrm{h}) /(5 \mathrm{~s}) \\
& =15 \mathrm{~km} / \mathrm{h} / \mathrm{s}
\end{aligned}
$$

Acceleration

- To convert to SI units, change km / h over to m / s
- $75 \mathrm{~km} / \mathrm{h}=21 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
\mathrm{a} & =(21 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}) /(5 \mathrm{~s}) \\
& =4.2 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Example 4

* Brian O'Connor is driving at 54 m / s before deciding he is driving way too fast and a little too furiously
* He slows the car to a reasonable $35 \mathrm{~m} / \mathrm{s}$ in 5.0 s
* What is O'Connor's average acceleration?
* Ans. $-3.8 \mathrm{~m} / \mathrm{s}^{2}$

Acceleration

* Acceleration also applies to changes in direction.
* We feel the effects when in a car we are pushed to the side when we turn a sharp corner

Sanity Check

* If the instantaneous velocity of an object is zero, does it mean that the instantaneous acceleration is zero?
* If the instantaneous acceleration is zero, does it mean that the instantaneous velocity is zero?
* Answer: not necessarily
* Can you think of examples?

Motion at Constant Acceleration

* If acceleration is constant (which in many practical situations it is), then average and instantaneous acceleration are the same
* Can use this fact to derive some pretty convenient relationships between acceleration, velocity, and position with respect to time

Motion at Constant Acceleration

$$
\begin{aligned}
& \mathrm{a}=\frac{\Delta v}{\Delta \mathrm{t}}=\frac{v_{\mathrm{f}}-v_{\mathrm{i}}}{\Delta \mathrm{t}} \\
& \longrightarrow v_{\mathrm{f}}=v_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t} \\
& v=\frac{\Delta x}{\Delta \mathrm{t}}=\frac{x_{\mathrm{f}}-x_{\mathrm{i}}}{\Delta \mathrm{t}} \\
& \longrightarrow x_{\mathrm{f}}=x_{\mathrm{i}}+v \Delta \mathrm{t}
\end{aligned}
$$

Motion at Constant Acceleration

* With a little simple calculus, can find acceleration's contribution to a change in position
- $x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{i}} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^{2}$
- $v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 \mathrm{a} \Delta x$
* (For the full derivation check out http:/ / physics.info / kinematics-calculus/)

Kinematic Equations

* $v_{\mathrm{f}}=v_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t}$
* $x_{\mathrm{f}}=x_{\mathrm{i}}+v_{\mathrm{i}} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^{2}$
- $v_{\mathrm{f}}{ }^{2}=v_{\mathrm{i}}^{2}+2 \mathrm{a} \Delta x$
* Important note: these equations are only valid under constant acceleration

Example 5

* You are designing an airport for small planes. One kind of airplane that might use this airfield must reach a speed before takeoff of at least $27.8 \mathrm{~m} / \mathrm{s}(100 \mathrm{~km} / \mathrm{h})$ and can accelerate at $2.00 \mathrm{~m} / \mathrm{s}^{2}$. If the runway is 150 m long, can this plane speed to take off?
* Ans. No
*What minimum length must the runway have?
* Ans. 193 m

Example 6

* How long does it take a car to cross a 30.0-m-wide intersection after the light turns green if it accelerates from rest at a constant $2.00 \mathrm{~m} / \mathrm{s}^{2}$?
* Ans. 5.48 s

Example 7

* Minimum stopping distance is important in traffic design. The average human reaction time is 0.22 s , meaning there is a 0.22 s delay between when one decides to break and when he or she actually begins breaking. A typical car can decelerate at $6.0 \mathrm{~m} / \mathrm{s}^{2}$ in good conditions. Knowing this, calculate the total stopping distance in meters for a vehicle is traveling at 100 . km /h.
- Ans. 71 m

Example 8

* A baseball pitcher throws a fastball with a speed of 44 m / s. If the pitcher accelerates the ball through a displacement of about 3.5 m before releasing it, estimate the average acceleration of the ball during the throwing motion.
* Ans. $280 \mathrm{~m} / \mathrm{s}^{2}$

Example 9

* You want to design an air-bag system that can protect the driver in a head-on collision at a speed of $100 \mathrm{~km} / \mathrm{h}$. If the car crumples upon impact over a distance of about 1 m , how much time does the air bag have to inflate in order to effectively protect the driver?
* Ans. less than 0.07 s

Freefall

* All object accelerate towards the Earth under the force of gravity
* Accelerate - so they will pick up speed as they descend

Freefall

* Up through the 16th Century, most people's intuition about freefall centered around the teachings of Aristotle
* "bodies of different weight [...] move in one and the same medium with different speeds which stand to one another in the same ratio as the weights; so that, for example, a body which is ten times as heavy as another will move ten times as rapidly as the other."

Freefall

* Galileo Galilei was the first scientific mind to challenge this commonly help belief
* Dropped masses off the edge of the Leaning Tower of Pisa

Freefall

* Acceleration due to gravity acts on all objects the same regardless of their mass
* Any observed differences are on account of air resistance

https: / / www.youtube.com/watch?v=E43-CfukEgs

Freefall

* How fast, exactly, does gravity accelerate objects here on Earth?
* Actual value:
* $\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
* Only the acceleration due to gravity here on Earth
* Varies slightly depending on latitude and elevation

Example 10

* Saruman is conducting physics experiments from atop the Tower of Orthanc.
* If he drops a ball from the peak of his 150-m-tall fortress, how far will the ball have fallen after $1.00 \mathrm{~s}, 2.00$ s , and 3.00 s ? (Neglect air resistance)
* Ans. 4.90 m
* 19.6 m
* 44.1 m

Example 11

*Wishing to take things a step further, the White Wizard instead throws the ball downward with an initial velocity of $3.00 \mathrm{~m} / \mathrm{s}$.

* What would be the ball's position and speed after 1.00 s and 2.00 s ?
* Ans @ $1.00 \mathrm{~s}: 7.90 \mathrm{~m}, 12.8 \mathrm{~m} / \mathrm{s}$
* @ 2.00 s : $25.6 \mathrm{~m}, 22.6 \mathrm{~m} / \mathrm{s}$

Example 12

* Feeling ambitious, Saruman now throws the ball upward at $3.00 \mathrm{~m} / \mathrm{s}$.
* How high does the ball go?
* Ans. 0.458 m
* How long is the ball in the air before it comes back to his hand?
* 0.612 s
* What is the ball's velocity when it comes back to his hand?
- $-3.00 \mathrm{~m} / \mathrm{s}$

High Throw

* How high can a human throw something?

High Throw

* How to throw the ball upward?

High Throw

* A person with a reasonably good arm can throw a baseball at about $32 \mathrm{~m} / \mathrm{s}$ (72 mph)
* Let's assume that, thanks to air resistance, you'll only get the ball about 50% as high as you would in a vacuum
* How high can you throw the ball?
* Answer: 26 m
* The average giraffe is about 5 m tall. What's the height of your throw in units of giraffes?
* Answer: just over 5 giraffes

High Throw

* The world record for fastest baseball pitch belongs to Aroldis Chapman, clocking in at $47 \mathrm{~m} / \mathrm{s}(105 \mathrm{mph})$
* How high (in giraffes) could he hypothetically launch a baseball?
* Answer: just over 11 giraffes

High Throw

* What could you change to throw even higher?

