ACT IV: ANERCY

Energy on large ancl small seales \& the power of machines

What comes to mind when you think of energy?

Energy is the ability to do stuff

ENERGY IS...

- Scalar (direction doesn't matter)
- Conserved (energy can't be created or destroyed, just shuffled around)
- Measured in a unit called a joule (J)
- kinetic or mechanical
- gravitational
- elastic
- heat
- chemical
- electrical
- nuclear
- mass

WORK

In physics, work is the energy needed to enact a force through some displacement

- Your mom's rearranging the living room and asks you move the couch to the other side of the room - Nbd
- Your family's moving, and your mom asks you to move the couch into the moving van
- Giant pain in the butt

$W=\int F \cdot d r$

work equals force integrated over distance

- Ex. You apply 50 N of force horizontally to move a grocery cart 30 m . How much work did you do?

- To calculate the work done, find the area under the force vs distance graph
- $50 \mathrm{~N} \times 30 \mathrm{~m}=1500 \mathrm{~J}$

WORK

A force can be exerted on an object and yet do no work

Your poll will show here

Still not working? Get help at pollev.com/app/help
or
Open poll in your web browser

Which of the following does work?
A. Holding a heavy bag of groceries
B. A large asteroid drifts 20 km at a constant speed
C. Lifting a mug of hot chocolate to your mouth
D. Gravity on a couch as you push it across the room

Which of the following does work?
A. Holding a heavy bag of groceries
B. A large asteroid drifts 20 km at a constant speed
C. Lifting a mug of hot chocolate to your mouth
D. Gravity on a couch as you push it across the room

The only forces that do work are the ones that contribute to motion

WORK CAN BE DONE...

- by an object or on an object
- by a particular force or by the net force

PRACTICE I: CAN I PAYYOU IN NICKELS?

- You demanded your job pay you in nickels, and now you have to drag a box of your bi-weekly paycheck to your car
- You drag the 50 kg crate 40 m across the floor by applying a constant force, $F_{A}=100 \mathrm{~N}$. The floor is rough and exerts a friction force $F_{f r}=40 \mathrm{~N}$
- Determine the work done by each force acting on the crate and the net work done on the crate
- Answer: $W_{g}=0$
- $W_{N}=0$
- $W_{A}=4,000 \mathrm{~J}$
- $W_{f r}=-1,600 \mathrm{~J}$
- $W_{\text {net }}=2,400 \mathrm{~J}$

NEGATIVE ENERGY

- Forces done against motion do negative work
- Energy put into the system is positive, energy taken out of the system is negative
. In the last problem, friction did negative work because it takes energy out of the system (and converts it to heat energy)

The Moon revolves around the Earth in a circular orbit, kept there by the gravitational force exerted by the Earth. What work does gravity do on the Moon?
A. positive work
B. negative work
C. no work at all

The Moon revolves around the Earth in a circular orbit, kept there by the gravitational force exerted by the Earth. What work does gravity do on the Moon?
A. positive work
B. negative work

C. no work at all

* No component of the force of gravity acts in the same direction as the Moon's motion, therefore gravity doesn't do any work on the Moon

Kinetic Energy is the energy of

 motion- The kinetic energy of an object depends on the mass of the object as well as its speed

$K E=1 / 2 m v^{2}$

the kinetic energy of an object equals half the object's mass
multiplied by the square of its speed

- The kinetic energy of a moving object is equal to the work required to bring up to that speed from rest (or, equivalently, the work the object can do while being brought back to rest)
- net force \times distance $=$ kinetic energy
- $F d=1 / 2 m v^{2}$

$30 \mathrm{~km} / \mathrm{hr}$ 10-m skid

$60 \mathrm{~km} / \mathrm{hr} 40-\mathrm{m}$ skid

- Notice that speed is squared, so doubling the speed quadruples the kinetic energy!
- It takes four times the work to double the speed and takes four times the stopping distance to bring it to a halt

$W_{\text {net }}=\Delta K E$

the net work done on an object is equal to the change in its kinetic energy

- Net work tells you how much energy is being put into or taken out of a system
- Put energy into a system, and it speeds up. Take energy out, and it slows down

Your poll will show here

\square
2

Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help or

Open poll in your web browser

An object initially has kinetic energy $K E$. If its mass is halved, what happens to its kinetic energy? Kinetic energy is
A. halved
B. quartered
C. stays the same
D. doubled
E. quadrupled

An object initially has kinetic energy KE. If its mass is halved, what happens to its kinetic energy? Kinetic energy is
A. halved
B. quartered
C. stays the same
D. doubled
E. quadrupled

Your poll will show here

\square
2

Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help or

Open poll in your web browser

An object initially has kinetic energy $K E$. If its velocity is doubled, what happens to its kinetic energy? Kinetic energy is
A. halved
B. quartered
C. stays the same
D. doubled
E. quadrupled

An object initially has kinetic energy $K E$. If its velocity is doubled, what happens to its kinetic energy? Kinetic energy is
A. halved
B. quartered
C. stays the same
D. doubled
E. quadrupled

PRACTICE II: GOTTA

 CATCH 'EM ALL!- Ash Ketchum, objectively the world's worst Pokémon trainer, throws a 145 g pokéball with a speed of $25 \mathrm{~m} / \mathrm{s}$.
a. What is the pokéball's kinetic energy?
b. How much work was done on the ball to make it reach this speed if it started from rest?

PRACTICE III:THE COST OF SPEED

How much work is required to accelerate a 1000 kg car from $20 \mathrm{~m} / \mathrm{s}$ to $30 \mathrm{~m} / \mathrm{s}$?

Potential Energy is the energy of position or configuration

- E.g. When you wind a clock, you do work on the clock and thus put energy into the system, which it then releases over time - You can think of potential as stored energy - it is energy the object has the potential to use

- When you put yourself in the position of some height, you have the potential to fall and gain kinetic energy
- How much kinetic energy you gain depends how high up you are and how strong the gravity is

PRACTICE IV: DOGGO

- You lift a puppy with mass m from the ground to a height h.
- If you lift the pup at a constant velocity, how much work did you do picking it up?

$P E_{g}=m g h$

the gravitational potential energy of an object is equal to the product on the object's weight and its height
. It's worth asking, "Height above (or below) what, exactly?"

. The two vases are the same height above the floor, but that fact isn't equally relevant to both of them

- When we talk about the object's "height," it can be the height above or below any reference point you want - It's the change in potential energy that has physical meaning since that's what's related to the work done

Your poll will show here

\square
2

Make sure you are in Slide Show mode

Still not working? Get help at pollev.com/app/help or

Open poll in your web browser

You and your friend (both mass m) need to get to the third floor of a the high school. You run up the stairwell while your friend takes the elevator. Who has the greater gravitational potential energy when you both reach the top?
A. You
B. Your friend
C. Both will be the same
D. Need more information

You and your friend (both mass m) need to get to the third floor of a the high school. You run up the stairwell while your friend takes the elevator. Who has the greater gravitational potential energy when you both reach the top?

A. You

B. Your friend

C. Both will be the same

D. Need more information

POTENTIAL ENERGY IS INDEPENDENT OFTHE PATH TAKEN

When an object falls, it will never hit the ground with more energy than it started with

- Stone in free fall:
=begins at rest
$=$ picks up speed/
loses height
=hits the ground
(nearly)

ENERGY TRANSFORMATION: FREE FALL

$$
m=1 \mathrm{~kg}, \mathrm{~h}=10 \mathrm{~m}
$$

ENERGY TRANSFORMATION

- Pole vaulter:
=running
- flex the pole
\Rightarrow lift off ground
=projectile through air
-land
-Sound \& heat

Work is done by the person on the pole and later by the pole on the person

- Work is done by water on a turbine
- Work is done by a bow on an arrow
- Work is done when energy is transferred from one object to another
- (or, if the objects are at different temperatures, heat can flow between them instead/in addition)

LAW OF CONSERVATION OF ENERGY

The total energy is neither increased nor decreased in any process. Energy can be transformed from one form to another, and transferred from one body to another, but the total amount remains

PRACTICE V:

 SKYDIVEA 65 kg skydiver drops out of an airplane from an altitude of 4.0 km and opens her parachute after she's fallen 3.0 km

Using conservation of energy, calculate her speed the moment before she launches the parachute (neglect air resistance)

- Average power is the rate at which work is done
- or the rate at which energy is transformed

$P=\frac{d W}{d t}$

power = the rate at which work is done over time

POWER IS...

- measured in watts (W)
- 1 watt $=1$ joule/sec
POWER

$$
\text { A } 40 \text { W }
$$

lightbulb
transforms 40 J of electrical energy into light and heat energy every second

Answers:
a) $W=60,000 \mathrm{~J}$
b) $t=30 \mathrm{~s}$

No violation of conservation of energy here. The energy the laser uses is much less than the power plants can output, but the laser releases that energy extremely quickly, hence the high power

E.g. thermal energy is KE of rapidly moving atoms or molecules. When heating an object, the molecules that make it up move around faster

- Energy stored in food or fuel is PE stored by virtue of relative position of atoms within molecule due to electric forces between atoms, i.e. chemical bonds. That potential energy is released through chemical reactions

MASS ENERGY

Fact: A hydrogen atom has less mass than the combined masses of the proton and electron that make it up

$$
\begin{gathered}
E=m c^{2} \\
\text { energy equals mass times the speed of light squared }
\end{gathered}
$$

- Understanding what this equation means will help us understand how something can weight less than the sum of its parts

$$
\begin{gathered}
E=m c^{2} \\
\text { energy equols mass } t \text { ines the speed of light syureded }
\end{gathered}
$$

- Originally, Einstein wrote his famous equation as $m=E / c^{2}$, because at its heart, this equation is really a lesson in how to think about what mass is

MASS ENERGY

- Two objects made of the same parts will not, in general, have the same mass
- Instead the mass depends on
I. How those parts are arranged

2. How those parts move within the bigger object
$m_{1} \neq m_{a}+m_{b}+m_{c}$
a
b
c
$m_{2} \neq m_{a}+m_{b}+m_{c}$

MASS ENERGY

- $m_{\text {extra }}=\underline{K E+P E+E_{\text {thermal }}}$

- $m_{\text {extra }} \approx 0.000000000000000001 \% m_{\text {watch }}$
- $m \neq$ amount of matter

You can think of mass as

- Indicator of how hard an object is to accelerate
- or how much gravitational force that object will feel

Fact: As soon as you turn on a flashlight, its mass begins to drop

- Does this mean the Sun is converting mass to energy? No!
- $K E+P E \rightarrow E_{\text {light }}$

- Any time you weigh something on a scale, you're actually measuring the total energy of that object!

SANITY CHECK

- Suppose that I stand with a flashlight in a closed box that has mirrored walls and is resting on a scale
- Will the reading on the scale change if I turn on the flashlight?

Answer: Nope! The energy can change forms or move around, but as long as the energy never leaves the box, the mass of the system will remain the same

MASS ENERGY

Fact: A hydrogen atom has less mass than the combined masses of the proton and electron that make it up

Potential Energy can be negative

If left to their own devices, all objects move from high potential energy to low potential energy

High Potential Energy

Low Potential Energy

The electron also has kinetic energy (always positive) as it orbits the proton

Since the electron's potential energy is greater than it's kinetic energy: - $K E+P E<0$

Because the total energy is negative, it actually takes away from the total mass of the atom

- $m_{\text {extra }}=(K E+P E) / c^{2}<0$

- An O_{2} oxygen molecule weighs less than two oxygen atoms
- What about the masses of protons and neutrons?
- They're made of quarks
- Mass from quark potential energy
- Electrons and quarks aren't made of smaller things
- Even this mass is a reflection of various kinds of potential energies!
- https://www.youtube.com/ watch?v=Ztc6OPNUq/s

Moral of the story:

Mass is a property - a property that all energy exhibits

FURTHER READINGS

Einstein's original I905

 paper: http://einsteinpapers.press.princeton. edu/vol2-trans/I86?ajax

Lorentz

Transformation: https://
www.youtube.com/watch?
$v=s b N E t M U j i M U$

SCENE III: MACHINES

Doing the work you didn't want to do since 2.3 million B.C.

[^0]

- The best way to analyze what a machine does is to think about the machine in terms of input and output
- Still constrained by conservation of energy

INPUT OUTPUT

$$
\begin{aligned}
\text { Workin }=\text { Workout }^{(F d)_{\text {in }}}=\left(F_{d}\right)_{\text {out }}
\end{aligned}
$$

- At the absolute best, you get out just as much energy as you put in
- The point of a machine is to take a small force applied over a large distance on the input side and get a large force applied over a small distance on the output side

$M A=\underline{F_{\text {out }}}$
 $F_{\text {in }}$

mechanical advantage $=$ the ratio of output force to input
force

A typical automotive jack has a mechanical advantage of 30 or more
i.e. a force of $100 \mathrm{~N}(22.5 \mathrm{lbs})$ applied to the input arm of the jack produces an output force of 3,000 N (675 lbs) - enough to lift one corner of an automobile.

LEVER

A lever includes a stiff structure (the lever) that rotates around a fixed point called the fulcrum

RAMP

- You need to get a 100 kg couch into a moving van 1.0 m above the ground
- How much work would you need to do to lift it in? How much force would you need to apply?
-Ans. $W=981 \mathrm{~J} ; F_{A}=981 \mathrm{~N}$
- Instead you use a ramp 10 m long and 1 m high
- How much work would you need to do to lift it in? How much force would you need to apply?
-Ans. $W=981 \mathrm{~J} ; F_{A}=98.1 \mathrm{~N}$
(excludes frictional losses)

Mechanical Advantage

5N(4x)

$$
\text { Mechanical advantage }=\frac{\text { Output force }}{\text { Input force }}
$$

	A	B	C
Input force	5 N	5 N	5 N
Output force	10 N	15 N	20 N
Mechanical advantage	2	3	4

PRACTICE VII: PULLEY PROBLEMS

- A pulley system consisting of six pulleys as shown to the right has an input force of 220 N applied to it. As a result of this input force the mass M is lifted a distance of 25.0 cm.
a. What is the force on the output end (what is the weight of the block)?
b. Through what distance was the input force applied (how much rope is pulled out)?
c. How much work was done on the mass M ?

a. $\quad F_{\text {out }}=1320 \mathrm{~N}$
b. $d_{i n}=1.5 \mathrm{~m}$
c. $W=330 \mathrm{~J}$

PRACTICE VIII: POWER PLANT

- A power plant burns

75 kg of coal every second. Each kg of coal contains 27 MJ of chemical energy.
-What is the power of the power station, in watts?

- Ans. eff. = 39\%
- What happened to the rest of the energy?
- Wasted as heat - up the chimney of the power station, in the cooling towers, and because of friction in the machinery

How much Force
power can
Yoda
output?

 POWER
-How fast did Yoda lift it?

- Front strut rises out of the water in about $31 / 2$ secs.
- Strut about 1.4 meters long
$o v=0.39 \mathrm{~m} / \mathrm{s}$

YODA'S
FORCE POWER

Strength of
 gravity on
 Degobah?

Q. Surrch Vibokimepedia.

 form resoings, though. There's sonasting a,lue diown there. Luke Skymallerriz

Dagriah sysimm. A reri:be world dí swamps ane: fermsts, it senvend as a refuge for Jedi Grand Masler Yoda during his exle ater the even\% of Order 66 had taken piece, but otherwse had no notable intellgent lifie.

Canterts :hnaw
Geography :Ectit

 was reachable oniy by otecure hyperlanes. I3

The ewnip ceyced surace of Dapothar

Asirograzhical imformat:

Otixipsabicn
Mocns
t. Da

24
Grtacer noles
N-P

सnamanamia:
Qtanpa:al

аикр:2:2 Plorizul infernáúsu Cksa 0krtis Terosarap osen bodies of water on the plaret

- Strength of gravity on Degobah?

$$
\begin{aligned}
& { }^{-} \mathrm{g}_{\mathrm{d}}=0.9 \mathrm{~g} \\
& =8.83 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

YODA'S
FORCE POWER
$P=W / t=F d / t=$
$\mathrm{mgd} / \mathrm{t}$
$P=(5600 \mathrm{~kg})(8.83$
$\left.\mathrm{m} / \mathrm{s}^{2}\right)(1.4 \mathrm{~m}) /(3.5 \mathrm{~s})$
$P=19.8 \mathrm{~kW}$

YODA'S FORCE POWER

- Enough to power a block of suburban houses
- ~25 horsepower (about the same as the motor in the electric-model Smart Car)
- At current electricity prices, Yoda would be worth about $\$ 2 /$ hour
- With world electricity
consumption pushing 2 terawatts, it would take a hundred million
Yodas to meet our demands

[^0]: Machines are designed to take advantage of the relationship between work, force, and distance

