Additional Exercises

A-1:	Find the wavelength of the ultrasonic wave emitted by a bat if it has a
frequency of $4.0 \times 10^{4} \mathrm{~Hz}$.	
A-2:	Radio station KSON in San Diego broadcasts at both $1240 \mathrm{kHz}(\mathrm{AM})$ and 97.3
MHz (FM). a) Which of these signals, AM or FM, has the longer wavelength?	
b) How long is each?	
A-3:	What is the wavelength of a B note (frequency 494 Hz) played a) by a flute?
b) If the flute and a sax play the same note, which of the following will be	
different: quality, pitch, or loudness?	
A-4:	As an anchor is being hoisted out of the water, it hits the hull of the ship, causing the anchor to vibrate with a frequency of 150 . Hz. If the speed of sound in sea water is 1520 m/s, how many wavelengths of sound will fit between the boat and the ocean bottom 395 m below?
A popular pastime at sporting events is "the wave," a phenomenon where	
individuals in the crowd stand up and sit down in sequence, causing a giant	
ripple of people. If a continuous "wave" passes through a stadium of people	
with a speed of 20 m/s and a frequency of 0.5 Hz, what is the distance from	
"crest" to "crest" (in other words, the wavelength of the wave)?	
A-6:	From his bedroom, Garth can hear the distant sound of a train horn as the
train travels through the mountains on its way from Chattanooga to	

> A1. 0.0085 m
> A3. a) 0.688 m
> A5. 40 m
> A7. a) Toward: 501.5 Hz Away: 498.5 Hz
> b) 3.0 Hz
> A9. $15.0 \mathrm{~m} / \mathrm{s}$
> A11. $20.4 \mathrm{~m} / \mathrm{s}$
> A15. $628 \mathrm{~m} / \mathrm{s}$

