Challenge Exercises for Further Study

- B-1: At what distance from Earth's center must a spacecraft be in order to experience the same gravitational attraction from both Earth and the moon when directly between the two? ($M_{\rm E} = 5.98 \times 10^{24}$ kg, $M_{\rm M} = 7.35 \times 10^{24}$ kg, $M_{\rm M} = 7.35 \times 10^{24}$ $10^{22} \text{ kg } d_{E-M} = 3.84 \times 10^8 \text{ m}$
- B-2: Jupiter's innermost Galilean satellite, Io, is covered with active volcanoes, which exist because of the immense gravitational tugging on the satellite by Jupiter and the other moons near Io. Io orbits 4.2×10^8 m from the center of Jupiter. The other Galilean satellites are located as follows from Jupiter's center. Europa: 6.7×10^8 m, Ganymede: 1.0×10^9 m, and Callisto: 1.9×10^9 m. If Jupiter and its satellites are lined up as shown, what gravitational force does the satellite Io experience? ($M_{\rm I}=8.9\times 10^{22}~{\rm kg}, M_{\rm E}=4.9\times 10^{22}~{\rm kg}, M_{\rm G}=1.5\times 10^{24}~{\rm kg}, M_{\rm C}=1.1\times 10^{23}~{\rm kg}, M_{\rm J}=1.9\times 10^{27}~{\rm kg})$

Saturn's satellite, Titan, orbits the planet in a little less than 16 days. Titan B-3: orbits Saturn at an average distance of 1.216×10^9 m from the center of the planet. Use this information to find the mass of Saturn.