Challenge Exercises for Further Study

B-1: \quad At what distance from Earth's center must a spacecraft be in order to experience the same gravitational attraction from both Earth and the moon when directly between the two? $\left(M_{\mathrm{E}}=5.98 \times 10^{24} \mathrm{~kg}, M_{\mathrm{M}}=7.35 \times\right.$ $10^{22} \mathrm{~kg} d_{\mathrm{E}-\mathrm{M}}=3.84 \times 10^{8} \mathrm{~m}$)

B-2: Jupiter's innermost Galilean satellite, Io, is covered with active volcanoes, which exist because of the immense gravitational tugging on the satellite by Jupiter and the other moons near Io. Io orbits $4.2 \times 10^{8} \mathrm{~m}$ from the center of Jupiter. The other Galilean satellites are located as follows from Jupiter's center. Europa: $6.7 \times 10^{8} \mathrm{~m}$, Ganymede: $1.0 \times 10^{9} \mathrm{~m}$, and Callisto: $1.9 \times 10^{9} \mathrm{~m}$. If Jupiter and its satellites are lined up as shown, what gravitational force does the satellite Io experience? $\left(M_{\mathrm{I}}=8.9 \times 10^{22} \mathrm{~kg}, M_{\mathrm{E}}=4.9 \times 10^{22} \mathrm{~kg}\right.$, $\left.M_{\mathrm{G}}=1.5 \times 10^{24} \mathrm{~kg}, M_{\mathrm{C}}=1.1 \times 10^{23} \mathrm{~kg}, M_{\mathrm{J}}=1.9 \times 10^{27} \mathrm{~kg}\right)$

B-3: Saturn's satellite, Titan, orbits the planet in a little less than 16 days. Titan orbits Saturn at an average distance of $1.216 \times 10^{9} \mathrm{~m}$ from the center of the planet. Use this information to find the mass of Saturn.

