16-2 Capacitance

Vocabulary

Capacitor: A device that stores charge on conductors that are separated by an insulator.

Capacitance is a measure of the amount of charge stored on the conductors, for a given potential difference.

capacitance =
$$\frac{\text{amount of charge}}{\text{potential difference}}$$
 or $C = \frac{\Delta q}{V}$

The SI unit for capacitance is the **farad** (F), which equals one **coulomb per** volt (C/V).

A capacitor may be used in a circuit by storing charge on two parallel plates and then periodically releasing it into the circuit, creating an intermittent flow of charge.

Solved Examples

The first capacitor was invented by Pieter van Musschenbroek in 1745 when he Example 3: and his assistant stored charge in a device called a Leyden jar. If 5×10^{-4} C of charge were stored in the jar over a potential difference of 10 000 V, what was the capacitance of the Leyden jar? (When van Musschenbroek touched the jar, he received such a large jolt that he exclaimed he would not try the experiment again for all the kingdom of France!)

Given:
$$\Delta q = 5 \times 10^{-4} \text{ C}$$
 Unknown: $C = ?$ $V = 10\ 000\ \text{V}$ Original equation: $C = \frac{\Delta q}{V}$

Solve:
$$C = \frac{\Delta q}{V} = \frac{5 \times 10^{-4} \text{ C}}{10\ 000 \text{ V}} = 5 \times 10^{-8} \text{ F}$$

Example 4: Lydia pushes the shutter button of her camera and the flash unit releases the 4.5×10^{-3} C of charge that was stored in a 500.- μ F capacitor. What is the potential difference across the plates of the capacitor inside the flash?

Solution: The term μ (micro) means 10^{-6} , so a μ F means 10^{-6} farad.

Given:
$$\Delta q = 4.5 \times 10^{-3} \text{ C}$$
 Unknown: $V = ?$ $C = 500. \times 10^{-6} \text{ F}$ Original equation: $C = \frac{\Delta q}{V}$

Solve:
$$V = \frac{\Delta q}{C} = \frac{4.5 \times 10^{-3} \text{ C}}{500. \times 10^{-6} \text{ F}} = 9.0 \text{ V}$$

Practice Exercises

Exercise 6:	The nervous system of the human body contains axons whose membranes act as small capacitors. A membrane is capable of storing 1.2×10^{-9} C of charge across a potential difference of 0.070 V before discharging nerve impulses through the body. What is the capacitance of one of these axon membranes?
Exercise 7:	Answer:
	charge, what is the potential difference between the cloud and the tower?
	Answer:
Exercise 8:	Dr. Frankenstein brings his monster to life with electroshock treatment by discharging a 50 μ F capacitor through the monster's neck across a potential difference of 24 V. How much charge flows into the monster to make him come alive?
	Answer:
Exercise 9:	On Saturday nights, Greg likes to go the Frisco Disco, where he can dance under the strobe light. The strobe contains a $200-\mu F$ capacitor that stores charge over a 1000-V potential difference. If the strobe flashes 4 times each second, what is the current flow created by the strobe's capacitor?
	Answer:

20 X 118