Name \qquad Period \qquad
Force Problems - Answer on another sheet of paper - DRAW A PICTURE!
$\mathrm{F}=\mathrm{ma}$
$\mathrm{F}=\mathrm{mg}$
$\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$

1. An object with a mass of $9-\mathrm{kg}$ is observed to have an initial velocity of $3 \mathrm{~m} / \mathrm{s}$. Twelve seconds later its velocity is $24 \mathrm{~m} / \mathrm{s}$. What is the acceleration acting on the object?
a. What must be the force acting on the object during that time?
b. If the $9-\mathrm{kg}$ object initial position is $15-\mathrm{m}$ from the reference point, what will be its final position?
2. A $95-\mathrm{N}$ force acts upon an object. It is initially at rest and is observed to travels distance of $400-\mathrm{m}$ in 6 -seconds. What is the acceleration acting on the object?
a. What is the mass of the object?
b. What is the final velocity of the $95-\mathrm{N}$ object?
3. A parachutist is falling under the influence of Earth's gravity. His mass is $100-\mathrm{kg}$.
a. Neglecting air resistance, what will be his acceleration?
b. What, therefore, is the net force acting on the parachutist (still neglecting air resistance)?
c. Now he opens the parachute, which provides an additional force of $400-\mathrm{N}$ in the opposite direction of gravity. What is the net force acting on the parachutist?
d. With his parachute now open, what will the acceleration be?
e. Repeat \# 9 for a parachutist with a mass of $150-\mathrm{kg}$. Will his acceleration for part d be more, less or the same? Explain.
4. A sled is being pulled along a horizontal road at constant speed by means of a rope that makes a 25° with the horizontal. If the friction between the sled and the snow is $84-\mathrm{N}$, how much is the forward pull?
a. How much is the tension on the rope?
5. A sign is supported as shown; the tension in the rope is $350-\mathrm{N}$. How much does the sign weigh if the angle between the rope and the wall is 40° ?

6. A $20-\mathrm{kg}$ pile of books is resting on a plank tilted so that it makes an angle of 20° with the ground. How much force do the books exert against the plank?
7. A force of $20-\mathrm{N}$ is needed to push a wagon up a frictionless 35° slope. How much does the wagon weigh?
