Equations

Orbital period

$$
\begin{aligned}
& p_{1}=d_{2}-d_{1} \\
& p_{2}=d_{3}-d_{2} \\
& p=\frac{\left(p_{1}+p_{2}\right)}{2}
\end{aligned}
$$

Note: you may see more or fewer than 3 transits. You want to calculate the average of all the periods you find. If you only see one transit, then you cannot find the orbital period.

Radius

$$
\text { Drop in Brightness }=\frac{r^{2}}{R^{2}}
$$

- $r=$ radius of the planet (km)
- $R=$ radius of the star (km)
- Earth radius $\left(r_{\text {Earth }}=6378.1 \mathrm{~km}\right)$

Mass

This can be estimated based on the size of the planet and its distance from its star.

- If $r<6 r_{\text {Earth }}$, then:

$$
m=0.9515 r^{3.1}
$$

- If $6 r_{\text {Earth }} \leq r<10 r_{\text {Earth }}$, then:

$$
m=1.7013 r^{2.0383}
$$

- If $r \geq 10 r_{\text {Earth }}$, then:

$$
m=0.6631 r^{2.4191}
$$

- $r=$ radius of planet (km)
- Earth mass $\left(m_{\text {Earth }}=5.976 \times 10^{24} \mathrm{~kg}\right)$

For the planet types discussed in class, the masses would be approximately:

- Hot Jupiter: $1.90 \times 10^{27} \mathrm{~kg}=317.8 \mathrm{~m}_{\text {Earth }}$
- Hot Neptune: $1.03 \times 10^{26} \mathrm{~kg}=17.23 \mathrm{~m}_{\text {Earth }}$
- Super-Earth: $1.90 \times 10^{27} \mathrm{~kg}=317.8 \mathrm{~m}_{\text {Earth }}$
- Exo Earth: $5.976 \times 10^{24} \mathrm{~kg}=1 \mathrm{~m}_{\text {Earth }}$

Semi-major axis (the distance of the planet from the star)

Listen to your instructor as to which way they would like you to calculate this.

- Kepler's Third Law graphs from Lesson 7: Creating and Interpreting Light Curves
- Using the orbital period, find the corresponding semi-major axis value on the line.
- Kepler's Third Law:

$$
P^{2}=\frac{4 \pi^{2}}{G(m+M)} a^{3}
$$

- $P=$ orbital period
- $G=$ gravitational constant $\left(6.67384 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~kg}^{-1} \mathrm{~s}^{-1}\right)$
- $m=$ mass of the planet
- $M=$ mass of the star
- $a=$ semi-major axis
- For this equation, the units need to match up with those of the gravitational constant and would need to estimate the mass of the planet and star first.
- Approximation of Kepler's Third Law:

$$
P^{2}=a^{3}
$$

- $P=$ orbital period (yrs)
- a = semi-major axis (AU)
- 1 AU is equal to the distance between Earth and the Sun (149597871 km).

Density

$$
\begin{gathered}
V=\frac{4}{3} \pi r^{3} \\
d=\frac{m}{V}
\end{gathered}
$$

The units should be in kilograms per meter cubed, $\left(\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right)$.

Surface temperature

$$
T_{P}=\left(\frac{L(1-A)}{16 \pi \sigma a^{2}}\right)^{\frac{1}{4}}=\left(\frac{R^{2} T_{S}^{4}(1-A)}{4 a^{2}}\right)^{\frac{1}{4}}
$$

- $T_{P}=$ surface temperature of the planet
- $L=$ luminosity of the $\operatorname{star}\left(L=4 \pi R^{2} \sigma T^{4}\right)$
- a = semi-major axis
- $T_{S}=$ temperature of the star
- $\sigma=$ Stefan-Boltzmann constant $\left(5.670 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}\right)$
- $A=$ albedo of the planet

For the types of planets discussed in class the albedo would be:

- Hot Jupiter: $A=0.52$
- Hot Neptune: $A=0.35$
- Super-Earth: $A=0.39$
- Exo Earth: $A=0.39$

