## **Equation Worksheet**

| Name:             |                                             |                                    | Number:       | Date:            | Per:                            |
|-------------------|---------------------------------------------|------------------------------------|---------------|------------------|---------------------------------|
| For               | r each equat                                | ion, on the first line rewrite the | e equation in | words. On the se | econd line rewrite the equation |
| usi               | ng the appro                                | opriate SI units.                  |               |                  |                                 |
| Example: $F = ma$ |                                             |                                    |               |                  |                                 |
|                   |                                             | force = $mass \times acceleration$ |               |                  |                                 |
|                   |                                             | $N = kg \times m/s^2$              |               |                  |                                 |
| 1.                | $v = \Delta x / \Delta t$                   |                                    |               |                  |                                 |
|                   |                                             |                                    |               |                  |                                 |
| 2.                | $\mathbf{a} = \Delta v / \Delta \mathbf{t}$ |                                    |               |                  |                                 |
| 3.                | $v_{\rm f} = v_{\rm i} + a$                 | Δt                                 |               |                  |                                 |
|                   |                                             |                                    |               |                  |                                 |
| 4.                | $\Delta x = v_{i} \Delta t$                 | $+ \frac{1}{2}a\Delta t^2$         |               |                  |                                 |
|                   |                                             |                                    |               |                  |                                 |
| 5.                | $v_{\rm f}^2 = v_{\rm i}^2 +$               | $2a\Delta x$                       |               |                  |                                 |
|                   |                                             |                                    |               |                  |                                 |
| Co                | mplete the b                                | oridge equations to convert bet    | ween linear r | notion and the a | ppropriate rotational analogue. |
| Exa               | ample:                                      | $s = r\theta$                      |               |                  |                                 |
| 6.                | v =                                         |                                    |               |                  |                                 |
|                   |                                             |                                    |               |                  |                                 |

| Cor | mplete the rotational analogues to the kinematic equations from the previous page.                   |
|-----|------------------------------------------------------------------------------------------------------|
| Exa | ample: $\omega = \Delta\theta/\Delta t$                                                              |
|     | angular velocity = change in angle / change in time                                                  |
|     | rad/s = rad/s                                                                                        |
| 8.  | $\alpha = \underline{\hspace{1cm}}$                                                                  |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
| 9.  | $\omega_{\mathrm{f}}$ =                                                                              |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
| 10. | $\Delta 	heta =$                                                                                     |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
| 11. | $\omega_{\rm f}^2 =$                                                                                 |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |
| For | each equation, on the first line rewrite the equation in words. Be specific. If, for example, the    |
| equ | nation is for force gravity, write "force gravity," not just "force." On the second line rewrite the |
| equ | nation using the appropriate SI units.                                                               |
| 12. | $F_c = mv^2/r$                                                                                       |
|     |                                                                                                      |
|     |                                                                                                      |
| 1.0 |                                                                                                      |
| 13. | $F_c = m\omega^2 r$                                                                                  |
|     |                                                                                                      |
|     |                                                                                                      |
| 14. | $a_{\rm c} = v^2/{ m r}$                                                                             |
|     |                                                                                                      |
|     |                                                                                                      |
|     |                                                                                                      |

| 15. | $Ff = \mu F_N$                    |
|-----|-----------------------------------|
| 16. | p = mv                            |
| 17. | $KE = \frac{1}{2}mv^2$            |
| 18. | $U_g = mgh$                       |
| 19. | $I = \sum mr^2$                   |
| 20. | $\tau = rFsin\theta$              |
| 21. | $\tau = I\alpha$                  |
| 22. | $KE_{rot} = \frac{1}{2}I\omega^2$ |
| 23. | L = mvr                           |
| 24. | $L = I\omega$                     |
|     |                                   |

| 25. | $F_g = mg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 26. | $F_g = Gm_1m_2/r^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| 27. | $g = GM_E/R_E^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |
| 28. | $U_g = Gm_1m_2/r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |
| 29. | $v_{\rm e} = \sqrt{(2{\rm GM/R})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |
| 30. | $v = 2\pi r/T$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
|     | in the blank with the appropriate coefficient in the moment of inertia equations for each given $\frac{1}{2}$ Hoop/hollow cylinder: $\frac{1}{2}$ $\frac{1}{2$ | ı body. |
| 31. | Hoop/ hollow cylinder : I = MR <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |

- 32. Disk/ solid cylinder:  $I = \underline{\hspace{1cm}} MR^2$
- 33. Hollow sphere:  $I = \underline{\hspace{1cm}} MR^2$
- 34. Solid sphere:  $I = \underline{\hspace{1cm}} MR^2$
- 35. Thin rod/ door, axis thru center:  $I = \underline{\hspace{1cm}} ML^2$
- 36. This rod/ door, axis thru end:  $I = \underline{\hspace{1cm}} ML^2$