Energy Practice Test

$$
\begin{array}{ccccc}
W=\int F \cdot d r \quad K E=1 / 2 m v^{2} \quad P E_{\mathrm{g}}=m g h \quad W_{\text {net }}=\Delta K E & P=d W / d t \\
\mathrm{MA}=F_{\text {out }} / F_{\text {in }}\left(=L_{\text {in }} / L_{\text {out }}\right)(=L / h)(=n)\left(=d_{\text {in }} / d_{\text {out }}\right) & e f f .=W_{\text {out }} / W_{\text {in }} & E=m c^{2} \quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
\end{array}
$$

Circle the most correct answer to the questions below.

1. Which combination of fundamental units can be used to express energy?
A. $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$
B. $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}$
C. $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
D. $\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$
2. A student does 60 J of work pushing a 3 kg box up a $5-\mathrm{m}-$ long ramp. What is the force?
A. 20 N
B. 15 N
C. 12 N
D. 4 N
3. How much work must be done to accelerate a 15 kg mass from $7.5 \mathrm{~m} / \mathrm{s}$ to $11.5 \mathrm{~m} / \mathrm{s}$?
A. 120 J
B. 422 J
C. 570 J
D. 992 J
4. A 75 kg bicyclist coasts at $12 \mathrm{~m} / \mathrm{s}$. What's his kinetic energy?
A. 5400 J
B. 900 J
C. 450 J
D. $11,000 \mathrm{~J}$
5. The potential energy of an object is dependent on that object's \qquad
A. acceleration
B. position
C. momentum
D. speed
6. A $60-\mathrm{kg}$ student climbs a 4 m ladder in 8 s . How much work does she do against gravity?
A. 2400 J
B. 290 J
C. 240 J
D. 30 J
7. A 900 N boat needs 600 N of force to move it at $15 \mathrm{~m} / \mathrm{s}$. The engine provides energy at a rate of
A. 0.024 J
B. 40 W
C. 7500 J
D. 9000 W
8. What max work can a 6000 -watt motor do in 10 s ?
A. 60 J
B. 600 J
C. 6000 J
D. $60,000 \mathrm{~J}$
9. A child sliding down a slide goes from rest to $7 \mathrm{~m} / \mathrm{s}$. What is the vertical height of the slide?
A. 0.71 m
B. 1.4 m
C. 2.5 m
D. 3.5 m
10. As a ball falls freely toward the ground, its total mechanical energy \qquad
A. increases
B. decreases
C. stays the same
11. According to the graph, how much work is needed to move the object 4 m ?
A. 120 J
B. 7.5 J
C. 5 J
D. 180 J

12. A $1-\mathrm{kg}$ rock is dropped off a $90-\mathrm{m}$-tall cliff. After falling 20 m , the rock's kinetic energy is
A. 20 J
B. 200 J
C. 700 J
D. 900 J
13. If the speed of a car doubles, its kinetic energy \qquad
A. quarters
B. halves
C. doubles
D. quadruples
14. While riding a ski lift, a $55-\mathrm{kg}$ skier rises 370 m upward. What is the skier's change in PE?
A. 54 J
B. 540 J
C. $20,000 \mathrm{~J}$
D. $200,000 \mathrm{~J}$
15. A single peanut has a mass energy of 90 trillion joules. What's it's mass in kilograms?
A. 90 trillion kilograms
B. 300,000 kilograms
C. 0.001 kilograms
D. 0.01 kilograms
16. An electric motor lifts a 0.5 kg mass 1.5 m in 5 s . What power is developed by the motor?
A. 0.15 W
B. 1.5 W
C. 3.8 W
D. 7.5 W
17. If the graph represents net force vs. distance, what must be true of the object's energy?

A. gravitational potential energy increases
B. gravitational potential energy decreases
C. kinetic energy increases
D. kinetic energy decreases
18. What happens to the total energy of a moving object if no friction acts on it?
A. increases
B. decreases
C. stays the same
D. not enough info
19. A ball is thrown at $3.5 \mathrm{~m} / \mathrm{s}$ straight up in the air. in the absence of air resistance, how high will it go?
A. 0.63 m
B. 0.18 m
C. 17 m
D. 60 m
20. A spacecraft orbits Earth in a circle. How much work is done by gravity?
A. $F_{g} r$
B. $-F_{g} r$
C. $1 / 2 m v^{2}$
D. zero
