\qquad Name \qquad Period \qquad
Electric Force: $\mathrm{F}=\frac{\mathrm{kq} q_{1} \mathrm{q}_{2}}{\mathrm{r}^{2}}$ Gravity Force: $\mathrm{F}=\frac{\mathrm{G} \mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}} \quad 1 \mathrm{C}=6.241 \times 10^{18}$ electrons \quad Electric Potential: $\mathrm{V}=\mathrm{PE} / \mathrm{q}$
$\mathrm{k}=9 \times 10^{9} \frac{\mathrm{Nm}^{2}}{\mathrm{C}^{2}} \quad \mathrm{G}=6.67 \times 10^{-11} \frac{\mathrm{Nm}^{2}}{\mathrm{~kg}^{2}} \quad 1 \mathrm{amp}=1 \mathrm{C} / \mathrm{s} \quad$ Electric Field: $\mathrm{E}=\underset{\mathrm{r}^{2}}{\mathrm{kq}} \quad \mathrm{F}=\mathrm{qE}$ e^{-}mass $=9.11 \times 10^{-31} \mathrm{~kg} \quad e^{-}$charge $=-1.6 \times 10^{-19} \mathrm{C} \quad$ Proton mass $=1.67 \times 10^{-27} \mathrm{~kg} \quad$ Proton charge $=-1.6 \times 10^{-19} \mathrm{C}$

SHOW ALL WORK ON A SEPARATE SHEET

1. The electron and proton of a hydrogen atom are separated, on average, by a distance of about $5.3 \times 10-11 \mathrm{~m}$.
a. Find the magnitude of the electric force that each particle exerts on the other. [8.2E-8N]
b. Find the gravitational force between the two. [3.6E-47]
c. Calculate how many times larger the electrostatic force is. [2.2E39]
2. Two protons in the iron nucleus are $4.0 \mathrm{E}-15$ meters.
a. What is the Coulomb force that exists between them? [14.4N]
b. What other forces stop the nucleus from flying apart?
3. Two electrostatic point charges of $+60.0 \mu \mathrm{C}$ and $+50.0 \mu \mathrm{C}$ exert a repulsive force on each other of 175 N . What is the distance between the two charges/
4. Two identical conducting spheres are placed with their centers 0.30 m apart. One is given a charge of $+12 \times 10-9 \mathrm{C}$ and the other is given a charge of $-18 \times 10-9 \mathrm{C}$.
a. Find the electric force exerted on one sphere by the other. The spheres are connected by a conducting wire.
b. After equilibrium has occurred, find the electric force between the two spheres.
5. What is the electric force between a glass ball with $+2.5 \mu \mathrm{C}$ of charge and a rubber ball with $-5.0 \mu \mathrm{C}$ of charge when they are separated by 5.0 cm ?
6. Two charged spheres are on a friction-less horizontal surface. One has a charge of $+3.0 \mathrm{E}-6 \mathrm{C}$, the other a $+6.0 \mathrm{E}-6 \mathrm{C}$ charge.
a. Calculate the force between them.
b. Sketch the two spheres, showing all forces on them. Make the length of your force arrows proportional to the strength of the forces.
7. Two positive charges of $6.0 \mathrm{E}-6 \mathrm{C}$ are separated by 0.50 m . Draw a force diagram for each of the charges, considering only electrostatic forces. What is the magnitude of the force between the charges? Is this force repulsive or attractive?
8. A negative charge of $2.0 \mathrm{E}-4 \mathrm{C}$ and a positive charge of $8.0 \mathrm{E}-4 \mathrm{C}$ are separated by 0.30 m . What is the magnitude of the force between the charges? Is this force repulsive or attractive?
