

Electrostatios vs. Electricity

- Electrostatics is the study of charges at rest
- Electrostatics: to help remember the difference the word static means stationary or not moving
- Electricity puts those charges in motion

Electric Current

- Defined as the flow of electric charge over a period of time ○ $I=\Delta Q / \Delta t$
- Measured in Amperes, A
- Is a completely dependent variable - it relies on voltage and resistance

Batteries

- Supply electric current to a system
- They only push charge
- They do NOT create or supply electric charge
- Use a chemical reaction to create a potential difference (voltage).

Ohm's Law

- Current in a wire is proportional to potential difference (voltage) applied to its ends
- V=IR
- Voltage: volts (V)
- Current: amps (A)
- Resistance: ohms (Ω)
- Resistance and voltage are independent
- Current is dependent

Resistivity

- All electronic devices offer resistance to the flow of current
- Resistivity is a measure of the resisting power of a specified material to the flow of an electric current
- $\mathrm{R}=\rho \mathrm{L} / \mathrm{A}$
- ρ (greek letter rho)= the resistivity of a material
- Measured in $\Omega \mathrm{m}=$ Ohm meters
- Resistivity depends on temperature
- Hot temperature \rightarrow increased resistivity
- Cold temperature \rightarrow decreased resistivity

Power

- Electric energy can be easily transformed into other forms of energy
- Examples:
- Lightbulbs turn it into light energy and thermal energy
- Motors turn it into mechanical work
- Electric heaters, stoves, and toasters turn it into thermal energy
- $\mathrm{P}=\mathrm{IV}=\mathrm{I} 2 \mathrm{R}=\mathrm{V} 2 / \mathrm{R}$

Series Circuits

- Series: two or more resistors are connected end to end
- Voltage will drop across each resistor

Same current will pass through each resistor

- Battery doesn't know difference between one big resistor and several small resistors working together

$$
\begin{gathered}
\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\ldots \\
\mathrm{I}=\text { constant } \\
\mathrm{R}_{\text {eq }}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots
\end{gathered}
$$

Parallel Circuits

- Resistors connected in parallel will split the current into branches that run parallel to each other
- Junctions are the joints where these branches connect
- Voltage remains constant across the circuit
- Current is split between each individual branch
- Resistance is simply the reciprocal of a series circuit

$\mathrm{V}=$ constant

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\ldots
$$

$$
\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\underset{\mathrm{R}_{2}}{\underline{1}}+\underline{\mathrm{R}_{3}}+\ldots
$$

Kirchhoff's Rules

1. Junction Rule: at any junction, the sum of currents in equals the sum of currents out (conservation of charge)
2. Loop Rule: the sum of the changes in potential around any closed path of a circuit must be zero (conservation of energy)

- These rules are used to find values in circuits that are not all parallel or all series, but mixed

Capacitors in Circuits

- Capacitors in parallel:
- $\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}$
- $\mathrm{C}_{\text {eq }}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$
- Capacitors in series:
- $V=V_{1}+V_{2}+V_{3}$
$\frac{1}{C_{T}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}$

Common Mistake \#1

- $\mathrm{V}=\mathrm{IR}$
- Do not forget that CURRENT is the DEPENDENT variable and voltage is INDEPENDENT
- To avoid this common mistake rewrite the equation as - I=V/R
- This way you remember current is the DEPENDENT variable

Common Mistake \#2

- Know how to identify a SERIES and a PARALLEL circuit

- To avoid this common mistake know that a series circuit follows in a single loop with no junctions and a parallel circuit has various pathways for the current to travel on

Common Mistake \#3

- Do not mix up the rules for Series and Parallel
- Parallel
$\mathrm{V}=$ constant
$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}+\ldots$
$\underline{1}=\underline{1}+\underline{1}+\underline{1}+\ldots$
R $R_{1} R_{2} R_{3}$
- Series

$$
\mathrm{V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}+\ldots
$$

I = constant

$$
R_{\text {eq }}=R_{1}+R_{2}+R_{3}+\ldots
$$

Common Mistake \#4

- Do not forget that when current is moving AGAINST the flow you ADD resistors and SUBTRACT for BATTERIES
- Normally when the current runs from the battery to a resistor you SUBTRACT when you reach the RESISTOR
- However, SUBTRACTION switches to ADDITION when the current runs against the system.

Common Mistake \#5

- Batteries only push charge
- It is commonly mistaken that batteries supply and store charge
- How to avoid: remember that capacitors are the ones that store charge and charges are supplied in wires

Common Mistake \#\#

- Do not mix up resistance and resistivity
- $R=\rho L / A$
- R is resistance
- ρ is resistivity
- Avoid this common mistake by remembering you have to use the resistivity (ρ) to find the resistance(R)

Kahoot

