Everything you need to know about Electricity

By Jason Brown and Charlie Reynolds

$$
\mathrm{I}=\mathrm{Q} / \mathrm{t}
$$

Current Measures the flow of electrons and is calculated by dividing the change in charge by the change in time. It is measured in Amperes(coulombs per second).

Common Misconception-Batteries

Current in a current does not flow from the negative to positive terminals of battery .

- Rather a conventional flow of current in a circuit flows from Positive to Negative
- Batteries supply this electrical energy by converting stored chemical energy
- Also, if voltage is changed in a battery the resistance will remain the same

$$
\mathrm{R}=\mathrm{pl} / \mathrm{A}
$$

Resistivity is the quantity that determines how much energy it takes to push charge through a wire. Resistivity is measured in Ω (Ohms).

Ohm's Law

Resistance dictates flow of current

- $V=I R$
- Resistance measured in Ohms Ω
- Voltage is the energy lost across a section of a circuit
- it depends on the current and the resistance

Power and Work

$$
\mathrm{P}=\mathrm{VI}=\mathrm{V}^{\wedge} 2 / \mathrm{R}=\mathrm{I}^{\wedge} 2 \mathrm{R}
$$

- Energy per time measured in watts
- (found by substitution)

$$
\mathrm{W}=\mathrm{qV}
$$

- Work measures energy
- Charge times Voltage (energy per charge).
$\mathrm{P}=\mathrm{W} / \mathrm{t}$

Circuits: Series

Resistors connected end to end are in SERIES

- Each resistor eats up energy creating a Voltage drop - Resistance Total= Sum of all the Resistors
- Current is constant
- Voltage Total= Sum of the Voltages across all resistors

Circuits: Parallel

Junctions split current into multiple parallel paths

- Voltage drop is equal across all legs of a parallel circuit.
- Current varies depending on resistance.
- The resistance of a parallel circuit is less than either of the separate paths.

Kirchoff's Rules

1. Junction Rule -- Current into a junction will equal current out of the junction
2. Loop Rule -- sum of potential charges in a loop is zero

Capacitors in Circuits/

Series

- Potential supplied by battery
- Q/ C total = The sum of each capacitors reciprocal
- Common Mistake: Remember that capacitors in series to take the reciprocal of the sum

Common Mistake-- Capacitors vs Resistors
In a series circuit, add resistance and take the reciprocal of capacitance.

In a parallel circuit, add capacitance and take the reciprocal of resistance.

Example Problem (for us)

A circuit has 4 resistors connected in series, all of which have a resistance of 10.0 Ω. If 4.00 A of current flow through the circuit how much work is done by the battery in one minute.

Answer: W = 38400J

Problem to do on your own

If a circuit has 5 resistors connected in parallel, each of which has 10.0Ω of resistance, and 8.00 A of current flow through the circuit from two batteries of equal strength, what is the power of each battery.

Answer: P = 64w

