Everything you need to know about Electricity

By Jason Brown and Charlie Reynolds

I = Q/t

Current Measures the flow of electrons and is calculated by dividing the change in charge by the change in time. It is measured in Amperes(coulombs per second).

Common Misconception-Batteries

Current in a current does not flow from the negative to positive terminals of battery .

- Rather a conventional flow of current in a circuit flows from **Positive to Negative**
- Batteries supply this electrical energy by converting stored chemical energy
- Also, if voltage is changed in a battery the resistance will remain the same

R = pl/A

Resistivity is the quantity that determines how much energy it takes to push charge through a wire. Resistivity is measured in Ω (Ohms).

Ohm's Law

Resistance dictates flow of current

• V=IR

- \circ Resistance measured in Ohms Ω
- Voltage is the energy lost across a section of a circuit
- it depends on the current and the resistance

Power and Work

 $P=VI = V^2 / R = I^2 R$

- Energy per time measured in watts
- (found by substitution)

W = qV

- Work measures energy
- Charge times Voltage (energy per charge).

P = W/t

Circuits: Series

Resistors connected end to end are in SERIES

- Each resistor eats up energy creating a Voltage drop
 Resistance Total= Sum of all the Resistors
- Current is constant
- Voltage Total= Sum of the Voltages across all resistors

Circuits: Parallel

Junctions split current into multiple parallel paths

- Voltage drop is equal across all legs of a parallel circuit.
- Current varies depending on resistance.
- The resistance of a parallel circuit is less than either of the separate paths.

Kirchoff's Rules

 Junction Rule -- Current into a junction will equal current out of the junction
 Loop Rule -- sum of potential charges in a loop is zero

Capacitors in Circuits/ Series

- Potential supplied by battery
 Q/C total = The sum of each capacitors reciprocal
- Common Mistake: Remember that capacitors in series to take the reciprocal of the sum

Common Mistake-- Capacitors vs Resistors

In a series circuit, add resistance and take the reciprocal of capacitance.

In a parallel circuit, add capacitance and take the reciprocal of resistance.

Example Problem (for us)

A circuit has 4 resistors connected in series, all of which have a resistance of 10.0Ω . If 4.00 A of current flow through the circuit how much work is done by the battery in one minute.

Answer: W = 38400J

Problem to do on your own

If a circuit has 5 resistors connected in parallel, each of which has 10.0Ω of resistance, and 8.00A of current flow through the circuit from two batteries of equal strength, what is the power of each battery.

Answer: P = 64w