EXAMPLE

The example below shows how to use Coulomb's law to calculate the strength of the force between two charges.
A 0.001 coulomb charge and a 0.002 coulomb charge are 2 meters apart. Calculate the force between them.

Given

The charges have magnitudes of 0.003 C and 0.005 C .

The charges are 2 meters apart.

Looking for

The force between the charges.

Relationships

$$
F=k \frac{q_{1} q_{2}}{r^{2}}
$$

Solution

$$
\begin{aligned}
& F=\left(9 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \frac{(0.001 \mathrm{C})(0.002 \mathrm{C})}{(2 \mathrm{~m})^{2}} \\
& F=4500 \mathrm{~N}
\end{aligned}
$$

The force is 4500 newtons.

PRACTICE $2 \square \longrightarrow$

1. Two particles, each with a charge of 1 C , are separated by a distance of 1 meter. What is the force between the particles?
2. What is the force between a 3 C charge and a 2 C charge separated by a distance of 5 meters?
3. Calculate the force between a 0.006 C charge and a 0.001 C charge 4 meters apart.
4. Calculate the force between a 0.05 C charge and a 0.03 C charge 2 meters apart.
5. Two particles are each given a charge of $5 \times 10^{-5} \mathrm{C}$. What is the force between the charged particles if the distance between them is 2 meters?
6. The force between a pair of charges is 100 newtons. The distance between the charges is 0.01 meter. If one of the charges is $2 \times 10^{-10} \mathrm{C}$, what is the strength of the other charge?
7. Two equal charges separated by a distance of 1 meter experience a repulsive force of 1,000 newtons. What is the strength in coulombs of each charge?
8. The force between a pair of 0.001 C charges is 200 N . What is the distance between them?
9. The force between two charges is 1000 N . One has a charge of $2 \times 10^{-5} \mathrm{C}$, and the other has a charge of $5 \times 10^{-6} \mathrm{C}$. What is the distance between them?
10. The force between two charges is 2 newtons. The distance between the charges is $2 \times 10^{-4} \mathrm{~m}$. If one of the charges is $3 \times 10^{-6} \mathrm{C}$, what is the strength of the other charge?

Practice set 2:

*
$9 \times$
$10^{9} \mathrm{~N}$
2. $2.16 \times 10^{9} \mathrm{~N}$
3.
4.

3375
$3.38 \times$
$10^{6} \mathrm{~N}$
5
5.63 N
6.
0.00556 C
7.
$3.33 \times$
$10^{-4} C$
8
6.7 m
9.
0.03 m
$10.2 .96 \times 10^{-12} \mathrm{C}$

