CIRCULAR MOTION

HOW DO YOU MAKE AN OBJECT TURN?

- $1^{\text {st }}$ Law: An object in motion will tend to stay in motion at a constant speed in a straight line unless acted on by an external, unbalanced force.
- Ok, so we need an external, unbalanced force
- But where should we apply it?

UNIFORM CIRCULAR MOTION

- An object that moves in a circle at a constant speed v is said to experience uniform circular motion
- The magnitude of the velocity remains constant, but the direction is
continuously changing

UNIFORM CIRCULAR MOTION

Rotation (or spin) - when a body turns about an internal axis

- when a body
turns about an external axis
The Earth rotates around an axis passing through its geographic poles once every 24 hours
- The Earth revolves around the Sun once every 365.25 days

UNIFORM CIRCULAR MOTION

- radial - behavior toward and away from the center of the circle
tangential - behavior along the edge of the circle
e.g. v is the tangential velocity $\left(v_{t}\right)$

UNIFORM CIRCULAR MOTION

Which way must the force be acting to make the object move in a circle?

Forces which point toward the center of rotation are called centripetal forces (F_{c}), meaning "center seeking" forces

CENTRIPETAL FORCE

What forces act as
centripetal forces?
ball on a string swung in a circle: tension
car rounding a bend: friction
orbit of planets: gravity

- rollercoaster car going
around a loop: normal force

CENTRIPETAL FORCE

As I swing a ball in a circle overhead, three quantities determine how big a force I'll need to keep it in a circle:

* How big is the ball: m
* How big is the circular path: r

How fast is the ball moving through the
 circle: v

CENTRIPETAL FORCE

$F_{c}=m a_{c}$
$a_{c}=v^{2} / r$
(Proof: https://
www.youtube.com/
watch? $\mathrm{v}=$ TNX
Z6XR3gA)
$F_{c}=m v^{2} / r$

FREQUENCY \& PERIOD

Frequency (f) is the number of revolutions per second measured in Hertz (Hz) (1 Hz=1 rev/s

- Period (T) is the time required to make one full revolution
measured in seconds , $T=1 / f$

FREQUENCY \& PERIOD

- You swing a ball from a sting of length r and, using a stopwatch, measure a period of T
- How fast must you be swinging the ball? $v=2 \pi r / T$

EXAMPLE 1

- You got the Ball and Chain! Set it to y or x and swing to do serious damage.
- You can swing the 18.0 kg ball from its 1.50-m-long chain at $18.8 \mathrm{~m} / \mathrm{s}$. What is the force of tension in the chain?
- Ans. $F_{T}=4,240 \mathrm{~N}$

EXAMPLE 2

- The Moon's nearly circular orbit about the Earth has a radius of about $384,000 \mathrm{~km}$ and a period T of 27.3 days. How fast does the Moon orbit the Earth (in m / s)?
- Ans. $v=1,020 \mathrm{~m} / \mathrm{s}$ (or 2,290 mph)

SANITY CHECK

- You're driving along in your car when you make a hard and quick left
- In what direction is the (net) force acting on your body?
- To the left!
- But your body feels like it's being pushed to the right because your inertia resists changes to its motion
- The so-called centrifugal ("center fleeing") force is a fictitious force experienced because your reference frame (the car, in this case) is accelerating

SANITY CHECK

- A ball is swung in a horizontal circle and released as shown to the right. Which way will the ball travel once it's released?

On a tangential path

SANITY CHECK

- A rider on a Ferris wheel moves in a vertical circle of radius r at constant speed v. Is the normal force the seat exerts on the rider at the top of the ride greater than, less than, or equal to the normal force the seat exerts at the bottom?
- Ans. $F_{N, t o p}<F_{N, b o t t o m}$

QUESTION 1

- A centripetal force acts
A. along the edge of motion
B. toward the center of motion
C. away from the center of motion
D.downward

QUESTION 1

- A centripetal force acts
A. along the edge of motion
B. toward the center of motion
C. away from the center of motion
D. downward

QUESTION 2

- When an object moves in a circle, there is no force pushing the object outward from the circle.
A. True
B. False

QUESTION 2

- When an object moves in a circle, there is no force pushing the object outward from the circle.
A. True
B. False

EXAMPLE 3

a) A 1000.-kg car rounds a curve on a flat road of radius $50 . \mathrm{m}$ at a speed of 50 . kph. What is the force of friction allowing the car to make the turn?

- Ans. $F_{f r}=3,900 \mathrm{~N}$
b) What must be the coefficient of friction between the road and tires?
- Ans. $\mu_{s}=0.39$

EXAMPLE 4

