Circular Motion

1. A review of the concepts

1. Uniform Circular Motion- An object that moves in a circle at a constant speed (v) is said to experience uniform circular motion. The magnitude of the velocity remains constant, but the direction is continuously changing.
2. Radial- behavior toward and away from the center of the circle
3. Tangential- behavior along the edge of the circle
4. Centripetal forces- a force that acts on a body moving in a circular path and is directed toward the center around which the body is moving.

Rotation vs Revolution

1. Rotation(or spin)- when a body turn about an internal axis
2. Revolution- when a body turns about an external axis
a. Earth rotates around an axis
b. Earth revolves around the sun

2. At least 3 common mistakes or misconceptions relevant to the topic and how to avoid them

1. Variables
2. What equation to use
3. Frequency VS Period

Variables

v= Velocity; m/s
$\mathrm{F}_{\mathrm{c}}=$ Centripetal force; $\mathrm{kg} * \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{v}_{\mathrm{t}}=$ tangential velocity; m/s $\mathrm{a}_{\mathrm{c}}=$ Centripetal acceleration;
r= Radius; m $\mathrm{m} / \mathrm{s}^{2}$
$\mathrm{M}=$ Mass; kg

> f= Frequency; Hz
T= Period; s

What equation to use

$$
\begin{aligned}
& \mathrm{a}_{\mathrm{c}}=\mathrm{V}^{2} / \mathrm{r} \\
& \mathrm{~F}_{\mathrm{c}}=\mathrm{mv}^{2} / \mathrm{r}
\end{aligned}
$$

$$
\mathrm{T}=1 / \mathrm{f}
$$

$$
v=2 \pi r / T
$$

Frequency VS Period

Frequency (f)
The number of revolutions per second

Measured in Hertz
$1 \mathrm{~Hz}=1$ revolution/second

Period (T)

The time it takes to make a full revolution

Measured in seconds
$\mathrm{T}=1 / \mathrm{f}$

FRO strategies

- How do you figure out what an FRQ is asking you to do?
- Always look at the units being used, $\mathrm{kg}, \mathrm{v}, \mathrm{m}$, and m / s.
- Look for keywords like radius, period, and speed.
- Most FRQ will tell you what to find, if not use these ideas.
- Is there any information needed to answer different FRQs that might be implied rather than directly stated?
- Centripetal forces like tension, friction and gravity are usually implied in FRQ's

Example problem 1: Ball and chain

You are swinging a 15 kg ball attached to its 5 m long chain and it is moving at $20 \mathrm{~m} / \mathrm{s}$. What is the force of tension of the chain?

Equation you will need:

$$
\mathrm{F}_{\mathrm{c}}=m v^{2} / \mathrm{r}
$$

Step 1: use equation to solve

$$
\begin{aligned}
F_{c} & =m v^{2} / \mathrm{r} \\
& =(15 \mathrm{~kg})\left(20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2} /(5 \mathrm{~m}) \\
& =1200 \mathrm{~N}
\end{aligned}
$$

Example problem 2: Amusement park ride

A person on an amusement park ride is 6 meters from the center. The ride makes 120 revolutions every minute. What is the speed of the passenger on the edge of the ride?

Step 1: convert

$$
\frac{120 \mathrm{rev}}{\mathrm{~min}} \times \frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}=753.98 \mathrm{rad} / \mathrm{min}
$$

step 2: use equation to solve

$$
\begin{aligned}
& v=r w \\
& v=(6 \mathrm{~m})(753.98 \mathrm{rad}(\mathrm{~min}) \\
& v=4524 \mathrm{~m} / \mathrm{min}
\end{aligned}
$$

Example problem 3:

What is the centripetal acceleration of the person on the ride?
step live equation to solve

$$
\begin{aligned}
& a_{c}=v^{2} / r \\
& a_{c}=(4524)^{2} /(6 \mathrm{~m}) \\
& a_{c}=3411096 \mathrm{~m} / \mathrm{min}^{2}
\end{aligned}
$$

Example problem 4: tangential velocity

What is the tangential velocity of a ball spun on a 2 m long string if the ball makes 10 revolutions every 2 seconds?

Step 1: convert

$$
\frac{10 \mathrm{rev}}{2 \mathrm{~s}} \times \frac{2 \pi \mathrm{rad}}{1 \mathrm{rev}}=31.4 \mathrm{rad} / \mathrm{s}
$$

step 2: use equation to solve

$$
\begin{aligned}
& v=r w \\
& v=(2 \mathrm{~m})(31.4 \mathrm{rad}(\mathrm{~s}) \\
& v=62.8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Example problem 5: centripetal acceleration

What is the centripetal acceleration of a car that rounds a bend that has a 50 m radius at $10 \mathrm{~m} / \mathrm{s}$?

Step 1: use equations to solve

$$
\begin{aligned}
& a_{c}=v^{2} / \mathrm{r} \\
& a_{c}=(10 \mathrm{~m})^{2} /(50 \mathrm{~m}) \\
& a_{c}=2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

4. Five practice multiple choice questions for the class

https://play.kahoot.it/\#/k/2949ccb4-2736-4bce-adc6-aOf4ebe9e96a

