Circular Motion

Emily, John, Hannah

How do objects move in a circle?

Uniform Circular Motion

There are two essential parts that are required to move an object in a circle.

- Center of rotation
- Tangential Velocity

Building Blocks of Circular Motion

- Centripetal Force

This describes how the object remains the same distance from the center point.

- Tangential Velocity

This describes the object's speed as it moves perpendicular to the center point.

Visualizing Velocity:

Think about a maypole...
When you run around, you don't face the pole, you face sideways to the pole.
-Your running provides the tangential velocity

\#velocity

Understanding Velocity...

-Period (seconds per revolution)
If a child runs at a certain speed, how many seconds does it take to make one revolution?
-Frequency (revolutions per second)
If a child runs at a certain speed, how many revolutions does it make in one second?
\#velocity

Visualizing Force:

Leaning your weight on the ribbon, the force of tension keeps you at a certain distance. -The ribbon's tension provides a center-seeking force.

Equations

Essential parts to Centripetal Forces:

-Mass (m)
-Length of String (r)
-Tangential Velocity (v^{2})
$F_{c}=m v^{2} / r$
Need to know the how fast a spinning object is going? \#velocity

$$
v=2 \pi r / T
$$

Common Mistakes and Misconceptions

Confusing centripetal force and centrifugal force for each other
Switching period and frequency
Not properly identifying centripetal forces

Free Response Strategy

> Check that the units being used match those in the formula
$>$ Isolate important information provided in the problem
> Bring in formulas from other units if applicable
> Check if gravity plays a role

You swing a ball horizontally on a

5 m string at $15 \mathrm{~km} / \mathrm{hr}$ and with a

force of 2.5 N . How much does
the ball weigh?

