GUIDE FOR NAVIGATING PLANET HUNTERS

CALCULATING EXOPLANET CHARACTERISTICS

PLANET HUNTERS

Go to: <u>www.planethunters.org</u>Log in with the provided information

 Go to the Planet Hunter Educators Guide collection: <u>http://talk.planethunters.org/#/collections/CPHS0000d9</u>
 Here you will find stars with known exoplanets around them.
 Select a star to focus on, try to select a different star from your other classmates.

Once you select a star, you should be able to see the light curves for this star.
Note: Each star can have multiple light curves taken at different times.
Select a Quarter to see other time periods.
Try to identify where the transits are in the curve (there are 2 in the image above)

Image APH00003yy

Zoom in on the transit to see the transit more closely.Use the scroll bar on the x-axis to move to different moments in the transit.

Run your cursor over the y-axis for a red line to appear.Use this to determine the amount of change in brightness.

Orbital period

Equations

$$p_1 = d_2 - d_1 p_2 = d_3 - d_2 p = \frac{(p_1 + p_2)}{2}$$

Note: you may see more or fewer than 3 transits. You want to calculate the average of all the periods you find. If you only see one transit, then you cannot find the orbital period.

Radius

$$Drop in Brightness = \frac{r^2}{R^2}$$

- *r* = radius of the planet (km)
- *R* = radius of the star (km)
- Earth radius ($r_{Earth} = 6378.1 \ km$)

Mass

This can be estimated based on the size of the planet and its distance from its star.

- If $r < 6 r_{Earth}$, then:
 - If $6 r_{Earth} \leq r < 10 r_{Earth}$, then:
- If $r \ge 10 r_{Earth}$, then:

$$m = 1.7013r^{2.0383}$$

 $m = 0.9515r^{3.1}$

$$m = 0.6631r^{2.4191}$$

- *r* = radius of planet (km)
- Earth mass ($m_{Earth} = 5.976 \times 10^{24} kg$)

For the planet types discussed in class, the masses would be approximately:

- Hot Jupiter: $1.90 \times 10^{27} kg = 317.8 m_{Earth}$
- **Hot Neptune**: $1.03 \times 10^{26} kg = 17.23 m_{Earth}$
- **Super-Earth**: $1.90 \times 10^{27} kg = 317.8 m_{Earth}$
- **Exo Earth**: $5.976 \times 10^{24} kg = 1 m_{Earth}$

Semi-major axis (the distance of the planet from the star)

Listen to your instructor as to which way they would like you to calculate this.

- Kepler's Third Law graphs from Lesson 7: Creating and Interpreting Light Curves
 - Using the orbital period, find the corresponding semi-major axis value on the line.
- Kepler's Third Law:

$$P^2 = \frac{4\pi^2}{G(m+M)}a^3$$

- \circ *P* = orbital period
- G = gravitational constant (6.67384×10⁻¹¹ $m^3kg^{-1}s^{-1}$)
- \circ *m* = mass of the planet
- \circ *M* = mass of the star
- *a* = semi-major axis
- For this equation, the units need to match up with those of the gravitational constant and would need to estimate the mass of the planet and star first.
- Approximation of Kepler's Third Law:

$$P^2 = a^3$$

- \circ *P* = orbital period (yrs)
- \circ *a* = semi-major axis (AU)
- \circ 1 AU is equal to the distance between Earth and the Sun (149597871 km).

Density

$$V = \frac{4}{3}\pi r^3$$
$$d = \frac{m}{V}$$

The units should be in kilograms per meter cubed, $(\frac{kg}{m^3})$.

Surface temperature

$$T_P = \left(\frac{L(1-A)}{16\pi\sigma a^2}\right)^{\frac{1}{4}} = \left(\frac{R^2 T_S^4 (1-A)}{4a^2}\right)^{\frac{1}{4}}$$

- T_P = surface temperature of the planet
- L =luminosity of the star ($L = 4\pi R^2 \sigma T^4$)
- *a* = semi-major axis
- T_{S} = temperature of the star
- σ = Stefan-Boltzmann constant (5.670×10⁻⁸Wm⁻²K⁻⁴)
- *A* = albedo of the planet

For the types of planets discussed in class the albedo would be:

- **Hot Jupiter**: A = 0.52
- **Hot Neptune**: A = 0.35
- **Super-Earth**: A = 0.39
- **Exo Earth**: A = 0.39

Planetary Information Sheet

IMPORTANT SOLAR SYSTEM PLANETARY INFORMATION

	Mass (x10 ²⁴ kg)	Radius (km)	Density (kg/m3)	Period (days)	Distance from Sun (x10 ⁶ km)	Mean Temp. (°C)
Mercury	.330	2440	5427	88	57.9	167
Venus	4.87	6052	5243	244.7	108.7	464
Earth	5.97	6378	5515	365.2	49.6	15
Mars	0.642	3396	3933	687.0	227.9	-65
Jupiter	1899	71492	1326	4331	778.6	-110
Saturn	568	60268	687	10747	1433.5	-140
Uranus	86.8	25559	1270	30589	2872.5	-195
Neptune	102	24764	1638	59800	4495.1	-200

TYPES OF EXOPLANETS

Hot Jupiter – A gaseous planet that has a mass similar to Jupiter, but is much closer to its star, creating very hot surface temperatures.

Hot Neptune – A gaseous planet that has a mass and characteristics similar to Neptune, but is much closer to its star, creating high surface temperatures.

Super-Earth - A gaseous planet that has a mass greater than Earth's but less than Neptune.

Exo Earth - A rocky planet with characteristics similar to Earth.

Exoplanet Data Sheet

NAME_____

DATE _____

Part 1	Star I.D.	 	
Transit 1	Total Brightness		
	Transit Brightness		
	Transit Day		
	Star I.D.	 	
Transit 2	Total Brightness		
	Transit Brightness		
	Transit Day		
	Star I.D.	 	
Transit 3	Total Brightness		
	Transit Brightness		
	Transit Day		

Part 2 Star I.D.	 			
Orbital Period				
Radius				
Mass				
Semi-Major Axis				
Density				
Surface Temperature				