When you see the words	This is what you think of doing...
1. Find the area of the unbounded region represented by the integral $\int_{1}^{\infty} f(x) d x$ (sometimes called a horizontal improper integral).	Set up $\lim _{b \rightarrow \infty} \int_{1}^{b} f(x) d x$ to see if the area diverges or converges.
2. Find the area of a different unbounded region under $f(x)$ from (a, b], where $\lim _{x \rightarrow a^{+}} f(x)=\infty$ or $-\infty$, where the area is represented by $\int^{b} f(x) d x$,(sometimes called a vertical improper)	Set up $\lim _{x \rightarrow a^{+}} \int_{a}^{b} f(x) d x$ to see if the area diverges or converges.
3. Given af(x), find arc length of the function on the interval $(a, f(a))$ and (b,f(b)).	Use the integral: $L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x$.
4. Given a curve in parametric form where $x=f(t), y=g(t)$, find the arc length of the curve on the interval $\left[t_{1}, t_{2}\right]$.	Use the integral: $L=\int_{t_{1}}^{t_{1}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t$
5. Given $\frac{d y}{d x}=F(x, y)=x y$ and an initial point $\left(x_{0}, y_{0}\right)=(1,1)$, find an approximate value for $f(1.2)$ and $\Delta x=0.1$	Think about Euler's Method to draw tangent lines and approximate along the tangent lines. First calculate the slope at $(1,1)$ and write an equation of a tangent line to f at $(1,1)$. Use this line to approximate a new point at $x=1.1$ using $\Delta x=0.1$. This gives you a second point to repeat the procedure again. Write another tangent line with a new slope and approximate the value of $f(1.2)$ by moving along this second tangent line to the point x $=1.2$.
6. Given the differential equation of the form $\frac{d P}{d t}=k P\left(1-\frac{P}{L}\right)$ for P as a function of t, where k and L are constants.	Separate the differentials, use partial fractions, integrate, use an initial condition to solve for the constant and end up with an equation of the form: $P=\frac{L}{1+A e^{-M k t}}$

7. Given the differential equation $\frac{d P}{d t}=12 P-4 P^{2}$ where P is measuring the number an animal present on day 0 . Find the value of P when the number of these animals is increasing the fastest.	7. First notice that $\frac{d P}{d t}=12 P-4 P^{2}$ is a parabola, so rewriting it in the form $\frac{d P}{d t}=k P\left(1-\frac{P}{L}\right)$ or $\frac{d P}{d t}=12 P\left(1-\frac{P}{3}\right)$ tells us that the $\frac{d P}{d t}=0 \vee$ when $\mathrm{P}=0$ or $P=3$. The number of animals is increasing fastest at the midpoint of 0 and 3 or 1.5.
8. Given the differential equation $\frac{d P}{d t}=1200 P-400 P^{2}$ where P is measuring the number an animal present on day 0 . Determine the $\lim _{n \rightarrow \infty} P(t)$.	Factoring $\frac{d P}{d t}=1200 P-4 P^{2}=1200 P\left(1-\frac{P}{300}\right)$ we can see that $\frac{d P}{d t}=0$ when $\mathrm{P}=0$ and $\mathrm{P}=300$. Therefore, $\mathrm{P}=300$ is the $\lim _{n \rightarrow \infty} P(t)$ since the grow increases between $P=$ 0 and $P=300$ but stops at $P=300$.
9. Given that a line segment has endpoints of (1,2) and $(5,10)$, write a set of parametric equations for the line that passes through these two points.	Determine the slope (m) of the line segment ($\mathrm{m}=2$), write an equation for the line segment using point slope form $(y=2(x-1)+2)$, and then rewrite this equation as parametric equations where $x(t)=t$ and $y(t)=2(t-1)+2$ or $y(t)=2 t$. Select values for t from knowing that x or t starts at 1 and goes to 5 so $1 \leq t \leq 5$
10. Given the position function of two particles in parametric form, $x_{1}(t)=f(t), y_{1}(t)=g(t)$ and $x_{2}(t)=h(t), y_{2}(t)=k(t)$, determine if the particles intersect or collide.	For the paths to intersect $x_{1}\left(t_{1}\right)=x_{2}\left(t_{2}\right)$ and $y_{1}\left(t_{1}\right)=y_{2}\left(t_{2}\right)$. Solve these equations simultaneously to find the time when the paths intersect. For the particles to collide they must be at a point at the same time. Determine the times when each particle is at the given point. If the times match, the particles collide, otherwise their paths only cross.
11. Given a set of parametric equations where $x=f(t), y=g(t)$, find $\frac{d y}{d x}$ or the slope of the tangent line.	Recall that $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$

12. A path of a particle is described with a set of parametric equations $x=f(t), y=g(t)$. Find the equation of the tangent line when $t=$ to .	Determine the point where the particle is $\left(x\left(t_{0}\right), y\left(t_{0}\right)\right)$. Then find the slope of the graph at the time $\mathrm{t}=\mathrm{t}_{0}$ by calculating $\frac{d y}{d x}=\left.\frac{d y / d t}{d x / d t}\right\|_{t=t_{0}}$. Then write the equation of the line in point-slope form.
13. A path of a particle is described with a set of parametric equations $x=f(t), y=g(t)$. a. Find all values of t where the particle's path is vertical. b. Find all values of t where the particle's path is horizontal.	a. Determine the times when $\frac{d x}{d t}=0$ and $\frac{d y}{d t} \neq 0$. b. Determine the times when $\frac{d y}{d t}=0 \text { and } \frac{d x}{d t} \neq 0$
14. Given a set of parametric equations where $x=f(t), y=g(t), \text { find } \frac{d^{2} y}{d x^{2}}$	First find $\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}$ then calculate $\frac{d}{d x}\left[\frac{d y}{d x}\right]=\frac{\frac{d}{d t}\left[\frac{d y}{d x}\right]}{\frac{d x}{d t}}$.
15. Given the position vector of a particle moving in the plane is $r(t)=\langle x(t), y(t)\rangle$. Find the velocity vector.	Recall that the velocity vector is $v(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ which means that you must differential $x(t)$ and $y(t)$ respect to t and then write a vector.
16. The position vector of a particle moving in the plane is $r(t)=\langle x(t), y(t)\rangle$. Find the acceleration vector.	Recall that the acceleration vector is $a(t)=\left\langle x^{\prime \prime}(t), y^{\prime \prime}(t)\right\rangle$ which means that you must differential $x^{\prime}(t)$ and $y^{\prime}(t)$ respect to t and then write a vector.
17. The position vector of a particle moving in the plane is $r(t)=\langle x(t), y(t)\rangle$. Find the speed of the particle at a moment at time $\mathrm{t}=\mathrm{a}$.	Recall that speed is the magnitude of the velocity vector and is found by calculating $\|v(a)\|=\left\|\left\langle x^{\prime}(a), y^{\prime}(a)\right\rangle\right\|=\sqrt{\left(x^{\prime}(a)\right)^{2}+\left(y^{\prime}(a)\right)^{2}}$
18. Given the velocity vector $v(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ and position vector at $\mathrm{t}=0$ as $\langle x(0), y(0)\rangle$, find the position vector at time $\mathrm{t}=\mathrm{a}$.	Recall that the position vector is $\left\langle x(0)+\int_{0}^{a} x^{\prime}(t) d t, y(0)+\int_{0}^{a} y^{\prime}(t) d t\right\rangle$

19. Given $v(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ determine when the particle is stopped.	You must consider both $x^{\prime}(t)$ and $y^{\prime}(t)$. You need to determine when both $x^{\prime}(t)$ and $y^{\prime}(t)$ equal zero.
20. Given $v(t)=\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle$ find the slope of the tangent line to the vector at t_{1}.	You must calculator $\frac{d y}{d x}=\frac{y^{\prime}(t)}{x^{\prime}(t)}$ and evaluate this expression at t_{1}.
21. Given a particle moves along a function $\mathrm{y}=3 \mathrm{x}^{2}+1$, the rate of change of x or $\frac{d x}{d t}=3 t$ for $\mathrm{t}>0$ and $\mathrm{x}(0)=1$. Find the particle's position at time $\mathrm{t}=3$.	Find the change in the x direction or $x(3)=x_{o}+\int_{0}^{3} x^{\prime}(t) d t=1+\int_{0}^{3}\left(3 x^{2}+1\right) d t=31 . \text { Determine }$ the y coordinate using the function $y=f(x)=3\left(31^{2}\right)+1=2884$. Write the coordinate: (31, 2884)
22. Find the slope of the tangent line to the polar curve $r=f(\theta)$.	$\begin{aligned} & \text { Recall that } \\ & x=r \cos \theta, y=r \sin \theta \Rightarrow \frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}} \end{aligned}$
23. Given a polar curve $r=f(\theta)$, find horizontal tangents to curve.	Recall that $x=r \cos \theta, y=r \sin \theta$ and then find where $r \sin \theta=0$ and where $r \cos \theta \neq 0$
24. Find vertical tangents to a polar curve $r=f(\theta)$.	Recall that $x=r \cos \theta, y=r \sin \theta$ and then find where $r \cos \theta=0 \quad$ and where $r \sin \theta \neq 0$
25. Find the area inside one of the petals on the flower described by $r=2 \cos (3 \theta)$.	Recall that one petal can be traced by $-\frac{\pi}{6} \leq \theta \leq \frac{\pi}{6}$ and the area can be found by calculating the integral

26. Find the area outside $r_{1}(\theta)$ but inside $r_{2}(\theta)$.	First find the points of intersection $\theta=a$ and $\theta=b$ and then integrate $\int_{a}^{b} \frac{1}{2}\left(r_{2}(\theta)-r_{1}(\theta)\right)^{2} d \theta$
27. Find the arc length of a function $r_{1}(\theta)$ from $\theta=a$ and $\theta=b$.	Recall the $x=r \cos \theta$ and $y=r \sin \theta$ to convert from polar form to parametric form. Then use the integral for arc length with parametric equations. Perform the integral $\int_{a}^{b} \sqrt{\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d t}{d \theta}\right)^{2}} d \theta$
28. Find the sum $\frac{3}{2}+\frac{1}{2}+\frac{1}{6}+\frac{1}{18}+\cdots$.	Notice that the sum is a geometric series where $a=\frac{3}{2}$ and $r=\frac{1}{3}$ so the sum is given by $\frac{a}{1-r}=\frac{\frac{3}{2}}{1-\frac{1}{3}}=1 \frac{1}{2}$
29. Determine if the series $\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+\cdots+\frac{n}{n+1}+\cdots$ converges or diverges	Think about the nth term in this series: $\frac{n}{n+1}$. By the nth term test, since $\lim _{n \rightarrow \infty} \frac{n}{n-1}=1 \neq 0$ the series diverges.
30. Determine if the series $\sum_{n=1}^{\infty} \frac{3}{n+1}$ converges or diverges	Think about using the integral test. $\begin{aligned} & \int_{1}^{\infty} \frac{3}{x+1} d x=\lim _{b \rightarrow \infty} \int_{1}^{b} \frac{3}{x+1} d x \\ & =\lim _{b \rightarrow \infty} \ln \frac{b+1}{2}=\infty \end{aligned}$ Therefore, the series diverges since the integral diverges.

31. Determine if the series $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ converges or diverges.	One test you might think of using is the p-series test. Since $p=\frac{3}{2}>0$ converges.
32. Determine if the series $\sum_{n=1}^{\infty} \frac{1+\sin n}{n^{2}}$ converges or diverges.	Since the series $\sum_{n=1}^{\infty} \frac{2}{x^{2}}$ converges and $0<\frac{1+\sin x}{x^{2}} \leq \frac{2}{x^{2}}$ the series converges by the comparison test.
33. Determine if the series $\sum_{n=1}^{\infty} \frac{3^{n}}{4^{n}+1}$ converges or diverges.	Using the ratio test, $\lim _{n \rightarrow \infty} \frac{\frac{3^{n+1}}{4^{n+1}+1}}{\frac{3^{n}}{4^{n}+1}}=\frac{3}{4^{n+1}+1}\left(4^{n}+1\right)<\frac{3}{4^{n+1}}\left(4^{n}\right)=\frac{3}{4}<1$ So the series converges.
34. Determine if the series $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{1}{n}$ converges or diverges.	Using the alternating series test, since each term $\frac{1}{n}$ decreases as n approaches infinity and converges to 0 , then the alternating series converges.
35. Write a series for $x \cos x$ where n is an integer	Recall that $\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$ and then multiply through by x .
36. Write a series for $\ln (1+3 x)$ centered at $\mathrm{x}=0$.	Recall that $\ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}+\cdots$ Substitute 3 x for x .

37. If $f(x)=2+x+\frac{1}{2} x^{2}+\frac{1}{4} x^{3}+\ldots$ represents a T Taylor Polynomials about $\mathrm{x}=0$, find $f(-2)$	Notice that $\mathrm{f}(\mathrm{x})$ is a geometric series with $\mathrm{a}=2$ and $\mathrm{r}=\frac{1}{2} x$ so the sum $0 f$ the series can be written as $\frac{a}{1-r}$ or $\left.\frac{2}{1-\frac{1}{2} x}\right\|_{x=-2}=\frac{2}{1-\frac{1}{2}(-2)}=1$
38. Write the nth degree Taylor Polynomial for $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=\mathrm{c}$.	$\begin{aligned} & T_{n}(x)=f(c)+f^{\prime}(c)(x-c)+f^{\prime \prime}(c) \frac{(x-c)^{2}}{2!} \\ & +\cdots+f^{(n)}(c) \frac{(x-c)^{n}}{n!}+\cdots \end{aligned}$
39. Given a Taylor series, find the Lagrange form of the remainder for the $4^{\text {th }}$ term.	This error is no greater than the value of the $5^{\text {th }}$ term at some value of a between x and c. $R_{n}(x)=\frac{f^{(n+1)}(a)}{(n+1)!}(x-c)^{n+1}$
40 Let S_{4} be the sum of the first 4 terms of an alternating series for $\mathrm{f}(\mathrm{x})$. Approximate $\left\|f(x)-S_{4}\right\|$	You should recognize this as the error for the $4^{\text {th }}$ term of an alternating series which is no greater than the absolute value of the $5^{\text {th }}$ term.
41. Given the polynomials $f(x)=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots$, what is $\mathrm{f}(\mathrm{x}) ?$	$f(x)=e^{x}$
42. Given the polynomial $f(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\ldots+\frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}+\ldots$, what is $\mathrm{f}(\mathrm{x})$?	$\mathrm{f}(\mathrm{x})=\sin (\mathrm{x})$
43. Given the polynomial $f(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots+\frac{(-1)^{n} x^{2 n}}{(2 n)!}+\ldots$ what is $\mathrm{f}(\mathrm{x})$?	$\mathrm{f}(\mathrm{x})=\cos (\mathrm{x})$

44. Find the interval of convergence of a series.	Apply the ratio test to find the interval and then test convergence at the endpoints.
45. Find $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}$	Check to see if you can use L'Hopital's Rule. Check to see if $f(a)=g(a)=0$ or $f(a)=g(a)=\infty$. If this is true, then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{f^{\prime}(a)}{g^{\prime}(a)}$. You may have to repeat these steps.
46. Find $\int \frac{d x}{x^{2}+x-12}$	Use partial fraction to set up two integrals: $\int \frac{A}{x+4} d x+\int \frac{B}{x-3} d x$. Solve for A and B and then complete the integration. $\int \frac{-\frac{1}{7}}{x+4} d x+\int \frac{\frac{1}{7}}{x-3} d x=\frac{1}{7} \ln \left\|\frac{x-3}{x+4}\right\|+C$

