

Honors Physics

Question 1

- A lacrosse ball is thrown horizontally with an initial velocity v_{0} (at $t=0$). At any moment, its direction of motion makes an angle θ to the horizontal that changes with time. Derive a formula for θ as a function of time as the ball follows a projectile's path.
- Ans. $\theta(t)=\tan ^{-1}\binom{g t}{v_{0}}$

Question 2

- Two lacrosse players run at right angles to each other. Player 1 runs at $3.5 \mathrm{~m} / \mathrm{s}$ and player 2 runs $5.7 \mathrm{~m} / \mathrm{s}$. What is the relative velocity of of player 1 as seen by player 2? What is the velocity of player 2 relative to player 1?
-Ans. $6.7 \mathrm{~m} / \mathrm{s}$ @ 122°
-Ans. $6.7 \mathrm{~m} / \mathrm{s} @-58^{\circ}$

Question 3

- Paul Rabil (major league lacrosse offensive player of the year 2012, 2011 , and 2009) runs at $7.3 \mathrm{~m} / \mathrm{s}$ towards attacker Vito DeMola for a pass. Rabil hurls the ball at 40 . m / s from a height of 2.8 m and at an angle 18° above the horizontal. What is the maximum distance from DeMola that Rabil can be when releasing the ball in order for his teammate to complete the pass?

Question 4

- Casey Powell (attack for Florida Launch) runs at 5.9 m / s after defender for the New York Lizards, Tim Henderson, who flees at 4.3 m / s. When Powell is $20 . \mathrm{m}$ behind Henderson, Powell accelerates uniformly and passes Henderson 2.1 s later. What was Powell's acceleration?
- Ans. $a=7.5 \mathrm{~m} / \mathrm{s}^{2}$

Question 5

- When Mark Millon played for the Boston Cannons, he once threw a lacrosse ball over a 12 -m-high fence 95 m from where he stood. Roughly what was the minimum initial speed of the ball when it left the head of the crosse? Assume the ball was launched 1.0 m above the ground and its path initially made a 40° angle with the ground.
- Ans. $v_{i}=83 \mathrm{~m} / \mathrm{s}$

Question 6

- A flying lacrosse ball has an instantaneous velocity of 90.0 kph at -37.7°
- Assuming the lacrosse ball has a tiny rocket attached, what velocity vector would the rocket need to add to the ball for it to move at 80.0 kph entirely in the $-x$ direction?
- Ans. 161 kph@160. ${ }^{\circ}$

Question 7

- It's the Rochester Rattlers' biggest game of the season. The boys are in the heat of the game when a disruptive spook leaps straight up from the field (at $35 \mathrm{~m} / \mathrm{s}$)! John Ortolanii hurls the lacrosse ball with all his might the moment the specter reaches his maximum height. If he stands $20 . \mathrm{m}$ away and can throw the ball at $49 \mathrm{~m} / \mathrm{s}$ from a height of 2.0 m , at what angle should he aim in order
 to hit the intruder in his spooky phantom face?
- Ans. $\theta=72^{\circ}$

Question 8

- \#2 Kevin Crowley is running late for practice with the Chesapeake Bayhawks! He speeds along the freeway at $140 . \mathrm{km} / \mathrm{h}$ and doesn't notice the unmarked police car traveling at a constant $90.0 \mathrm{~km} / \mathrm{h}$. If precisely 1.00 s after Crowley passes the police car, the police officer accelerates the car at $2.00 \mathrm{~m} / \mathrm{s}^{2}$ and Crowley maintains a constant speed, will Crowley make it to the Navy-Marine Corps Memorial Stadium 650. m away?
- Ans. $t_{o t}=15.8 \mathrm{~s}, t_{p}=16.7 \mathrm{~s} ; n o p e!$

Question 9

- Assume Crowley's speed was not know. The police car, traveling at $90.0 \mathrm{~km} / \mathrm{h}$, accelerates at $2.00 \mathrm{~m} / \mathrm{s}^{2}$ 1.00 s after being passed. If the police officer overtakes Crowley after 7.00 s, what was the former Cascade MLL Rookie of the Week's speed?
- Ans. $v_{k c}=109 \mathrm{~km} / \mathrm{h}$

Question 10

- In 1971, Tom Cafaro was the first lacrosse player to go to the Moon. While there, he was said to have goosed a ball 180 m ! Assuming that the swing, angle, and so on, were the same as on Earth where Cafaro could only goose a ball 30 m , estimate the acceleration due to gravity on the surface of the Moon.
- Ans. $g_{m}=1.6 \mathrm{~m} / \mathrm{s}^{2}$

