

2D Kinematics

Honors Physics

Vectors

* Often helpful to draw out vectors when depicting physics situations
: Arrows show direction
* Length of the arrow represents relative magnitude

Adding Vectors

\% In one dimension, adding vectors is a simple matter of adding or subtracting values

* Sven the Irresponsible walks 8 km east, realizes he left his kid at the ice cream stand, then walks 6 km west to retrieve her
\%. The scalar distance traveled is $8 \mathrm{~km}+6 \mathrm{~km}=14 \mathrm{~km}$
\% The net or resultant displacement accounts for the change in direction. $8 \mathrm{~km}-6 \mathrm{~km}=2 \mathrm{~km}$ east
$\xrightarrow{2 \mathrm{~km}} \stackrel{6 \mathrm{~km}}{ } \mathrm{~km}$

Adding Vectors
\% However, simple arithmetic cannot be used if the two vectors are not along the same line

Distance vs. Displacement

* Little Sally leaves her home, walks 40 m north, 30 m east, and 20 m south
* How far is Sally from home?
* $\sqrt{ }\left(20^{2}+30^{2}\right)=36 \mathrm{~m}$
* In what direction?
* $\tan ^{-1}(20 / 30)=34^{\circ}$ North of East
- $36 \mathrm{~m} @ 34^{\circ} \mathrm{N}$ of E
* This is Sally's displacement

Adding Vectors

\% The same idea applies to all vectors

* An alien spaceship cranks on two trusters, one launching it to the left at $50 . \mathrm{m} / \mathrm{s}$, the other propelling it up at $75 \mathrm{~m} / \mathrm{s}$.

\because What is the net velocity of the spaceship?
$\because v_{\text {net }}=\sqrt{ }\left(v x^{2}+v y^{2}\right)$

Methods of Adding Vectors

Methods of Adding Vectors

Tail-to-Tip Method

Methods of Adding Vectors

Parallelogram Method

Example 1

* A metal sphere is being pulled by magnets in front of it as well as to its right.
 The magnet in front of the sphere
: The magnet on right accelerates the sphere to the right at $3.0 \mathrm{~m} / \mathrm{s}^{2}$. accelerates it forward at $5.0 \mathrm{~m} / \mathrm{s}^{2}$
*What is the magnitude of the sphere's net acceleration?
*Ans. $a_{n e t}=5.8 \mathrm{~m} / \mathrm{s}^{2}$

Example 2

\because A third magnet is added behind the sphere, pulling it at a rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$
\because What is the magnitude of the new net acceleration?

Example 2

\because A third magnet is added behind the sphere, pulling it at a rate of $1.0 \mathrm{~m} / \mathrm{s}^{2}$
\% What is the magnitude of the new net acceleration?

$\because \mathrm{a} y=5.0 \mathrm{~m} / \mathrm{s}^{2}-1.0 \mathrm{~m} / \mathrm{s}^{2}$
$\because \mathrm{a} y=4.0 \mathrm{~m} / \mathrm{s}^{2}$
\therefore Ans. $a_{n e t}=5.0 \mathrm{~m} / \mathrm{s}^{2}$

Example 3

*The magnet behind the metal sphere is doubled, doubling the rate acceleration in that $5.0 \mathrm{~m} / \mathrm{s}^{2}$ direction.
\because Now what is the magnitude of the net acceleration?

Example 3

\therefore The magnet behind the metal sphere is doubled, doubling the rate acceleration in that direction.

* Now what is the magnitude of
 the net acceleration?
\because Ans. $a_{n e t}=4.2 \mathrm{~m} / \mathrm{s}^{2}$

Angle of the Resultant Vector

\because What is the direction of the resultant vector?

\because SOH CAH TOA
$\because \sin \theta=$ opposite/hypotenuse
$\because \sin \theta=\mathrm{V}_{y} / \mathrm{V}_{\mathrm{R}}$
$\because \cos \theta=\mathrm{V}_{x} / \mathrm{V}_{\mathrm{R}}$
$\because \tan \theta=\mathrm{V}_{y} / \mathrm{V}_{x}$

Angle of the Resultant Vector

Vector Components

\because Two ways to specify a vector in a given coordinate system:

1. Give its x and y components
$\because \mathbf{V}=21.7 \hat{x}+12.5 \hat{y}$
2. Give its magnitude V and the angle θ it makes with the positive x-axis
$\because \mathbf{V}=25 @ 30^{\circ}$

Vector Decomposition and Resolution

Example 4

* Link goes out to Hyrule Field to do some treasure hunting.
* Link walks 22.0 m north and plucks a hidden rupee.
\because He then runs at a direction 60° south of east for 47.0 m to snag another rupee.
*What is Link's displacement from his starting point?
\therefore Ans. $D=30.0 \mathrm{~m} @-38.5^{\circ}$

Rules for Resolving Vectors

1. Decompose all vectors into x and y components
2. Add the x components together to get the x component of the resultant. Ditto for y
$\therefore \sum \mathrm{V}_{x}=\mathrm{V}_{1 x}+\mathrm{V}_{2 x}+\ldots$
$\because \sum \mathrm{V}_{y}=\mathrm{V}_{1 y}+\mathrm{V}_{2 y}+\ldots$
3. If you want to know the magnitude and direction of the resultant vector:
$\because \mathrm{V}=\sqrt{ }\left(\mathrm{V}_{x}{ }^{2}+\mathrm{V}_{y}{ }^{2}\right) \quad \tan \theta=\mathrm{V}_{y} / \mathrm{V}_{x}$

* Note: pay attention to signs! Any components that point along the negative x or y axis get a negative sign

Example 5

: Hermione Granger, being the clever one, uses mirrors to bounce her spell around the room and hit Draco Malfoy in his dumb face.

* Her spell rockets due east for 6.2 m , bounces southeast $\left(45^{\circ}\right)$ for 4.4 m , and reflects off a second mirror at 53° south of east for 5.5 m .
*What is the total displacement of Hermione's spell?
\therefore Ans. $D=9.6 m @-51^{\circ}$

Projectile Motion

* Much like free fall, but now the falling object also has a horizontal component to its motion as well.
* Per usual, we will ignore air resistance

Projectile Motion

\% We already know that the force of gravity imparts a vertical acceleration onto objects in free fall
\therefore What about its horizontal velocity?

Projectile Lab 1

\% Research Question: How does the horizontal velocity affect the time spent in free fall?
\% Claim: (Your conclusion here)
\% Evidence: Create a time vs v_{x} graph

\because Justification: If there is a correlation between horizontal velocity and free time, why is it the way it is? If there isn't a correlation, why not?

