

LINEAR MOTION

Honors Review

1. What is the average speed of a complete round-trip in which the outgoing 200 km is covered at $90 \mathrm{~km} / \mathrm{hr}$, followed by a one-hour lunch break, and the return 200 km is covered at $50 \mathrm{~km} / \mathrm{h}$?
A. $47 \mathrm{~km} / \mathrm{h}$
B. $70 \mathrm{~km} / \mathrm{hr}$
C. $55 \mathrm{~km} / \mathrm{h}$
D. $0 \mathrm{~km} / \mathrm{h}$
2. What is the average speed of a complete round-trip in which the outgoing 200 km is covered at $90 \mathrm{~km} / \mathrm{hr}$, followed by a one-hour lunch break, and the return 200 km is covered at $50 \mathrm{~km} / \mathrm{h}$?
A. $47 \mathrm{~km} / \mathrm{h}$
B. $70 \mathrm{~km} / \mathrm{hr}$
C. $55 \mathrm{~km} / \mathrm{h}$
D. $0 \mathrm{~km} / \mathrm{h}$
3. A sports car is advertised to be able to stop in a distance of 50 m from a speed of $90 \mathrm{~km} / \mathrm{h}$. How many g's is it acceleration?
A. 0.64
B. 6.25
C. 81
D. 8.26
4. A sports car is advertised to be able to stop in a distance of 50 m from a speed of $90 \mathrm{~km} / \mathrm{h}$. How many g's is it acceleration?
A. 0.64
B. 6.25
C. 81
D. 8.26
5. In coming to a stop, a car leaves skid marks 80.0 m long on the highway. Assuming an initial speed of $33.5 \mathrm{~m} / \mathrm{s}$ and a deceleration of $7.00 \mathrm{~m} / \mathrm{s}^{\wedge} 2$, estimate the time it took the car to come to a complete halt.
A. 3.38 s
B. 2.38 s
C. 5.44 s
D. 4.78 s
6. In coming to a stop, a car leaves skid marks 80.0 m long on the highway. Assuming an initial speed of $33.5 \mathrm{~m} / \mathrm{s}$ and a deceleration of $7.00 \mathrm{~m} / \mathrm{s}^{\wedge} 2$, estimate the time it took the car to come to a complete halt.
A. 3.38 s
B. 2.38 s
C. 5.44 s
D. 4.78 s
7. A car speeds from rest to $25.0 \mathrm{~m} / \mathrm{s}$ in 5.00 s . How far did it travel in that time?
A. 112 m
B. 125 m
C. 250 m
D. 62.5 m
8. A car speeds from rest to $25.0 \mathrm{~m} / \mathrm{s}$ in 5.00 s . How far did it travel in that time?
A. 112 m
B. 125 m
C. 250 m
D. 62.5 m
9. A baseball player catches a ball 3.3 s after throwing it. With what speed did he throw it?
A. $3.0 \mathrm{~m} / \mathrm{s}$
B. $16 \mathrm{~m} / \mathrm{s}$
C. $53 \mathrm{~m} / \mathrm{s}$
D. $25 \mathrm{~m} / \mathrm{s}$
10. A baseball player catches a ball 3.3 s after throwing it. With what speed did he throw it?
A. $3.0 \mathrm{~m} / \mathrm{s}$
B. $16 \mathrm{~m} / \mathrm{s}$
C. $53 \mathrm{~m} / \mathrm{s}$
D. $25 \mathrm{~m} / \mathrm{s}$
11. A train leaves Chicago traveling at $100 . \mathrm{km} / \mathrm{h}$. It's destined for New York City, I,200 km away. At the same time, another leaves NYC headed for Chicago at $90 . \mathrm{km} / \mathrm{h}$. How long is it before they cross paths?
A. 6.3 h
B. 12 h
C. 13 h
D. 1.3 h
12. A train leaves Chicago traveling at $100 . \mathrm{km} / \mathrm{h}$. It's destined for New York City, I,200 km away. At the same time, another leaves NYC headed for Chicago at $90 . \mathrm{km} / \mathrm{h}$. How long is it before they cross paths?
A. 6.3 h
B. 12 h
C. 13 h
D. 1.3 h
13. A bowling ball traveling with a constant speed hits the pins at the end of a bowling lane 16.5 m long. The bowler hears the sound of the ball hitting the pins 2.50 s after the ball is released from his hands. What is the speed of the ball? The speed of sound is $340 \mathrm{~m} / \mathrm{s}$.
A. $12.3 \mathrm{~m} / \mathrm{s}$
B. $6.73 \mathrm{~m} / \mathrm{s}$
C. $18.8 \mathrm{~m} / \mathrm{s}$
D. $6.60 \mathrm{~m} / \mathrm{s}$
14. A bowling ball traveling with a constant speed hits the pins at the end of a bowling lane 16.5 m long. The bowler hears the sound of the ball hitting the pins 2.50 s after the ball is released from his hands. What is the speed of the ball? The speed of sound is $340 \mathrm{~m} / \mathrm{s}$.
A. $12.3 \mathrm{~m} / \mathrm{s}$
B. $6.73 \mathrm{~m} / \mathrm{s}$
C. $18.8 \mathrm{~m} / \mathrm{s}$
D. $6.60 \mathrm{~m} / \mathrm{s}$
15. A speeding motorist traveling $120 . \mathrm{km} / \mathrm{h}$ passes a stationary police officer. The officer immediately begins pursuit at a constant acceleration of $10.0 \mathrm{~km} / \mathrm{h} / \mathrm{s}$. How much time will it take for the police officer to reach the speeder, assuming the speeder maintains a constant speed?
A. 12.0 s
B. 18.4 s
C. 24.0 s
D. 30.1 s
16. A speeding motorist traveling $120 . \mathrm{km} / \mathrm{h}$ passes a stationary police officer. The officer immediately begins pursuit at a constant acceleration of $10.0 \mathrm{~km} / \mathrm{h} / \mathrm{s}$. How much time will it take for the police officer to reach the speeder, assuming the speeder maintains a constant speed?
A. 12.0 s
B. 18.4 s
C. 24.0 s
D. 30.1 s
17. A falling stone takes 0.30 s to travel past a window 2.2 m tall. From what height above the top of the window did the stone fall?
A. 1.8 m
B. 4.0 m
C. 2.6 m
D. 7.3 m
18. A falling stone takes 0.30 s to travel past a window 2.2 m tall. From what height above the top of the window did the stone fall?
A. 1.8 m
B. 4.0 m
C. 2.6 m
D. 7.3 m
10.A stone is thrown vertically upward with a speed of $12.0 \mathrm{~m} / \mathrm{s}$ from the edge of a cliff 75.0 m high. How much time later does it reach the bottom of the cliff?
A. 6.25 s
B. 2.45 s
C. 5.32 s
D. 2.87 s
10.A stone is thrown vertically upward with a speed of $12.0 \mathrm{~m} / \mathrm{s}$ from the edge of a cliff 75.0 m high. How much time later does it reach the bottom of the cliff?
A. 6.25 s
B. 2.45 s
C. 5.32 s
D. 2.87 s
II.A runner hopes to complete the $10,000-\mathrm{m}$ run in less than 30.0 min. After exactly 27.0 min of running at a constant pace, there are still IIO0 m to go. The runner must then accelerate at 0.20 $\mathrm{m} / \mathrm{s}^{\wedge} 2$ for how many seconds in order to achieve a run time of exactly 30.0 min ?
A. $180 . \mathrm{s}$
B. 73.7 s
C. 3.13 s
D. 2.53 s
II.A runner hopes to complete the $10,000-\mathrm{m}$ run in less than 30.0 min. After exactly 27.0 min of running at a constant pace, there are still IIO0 m to go. The runner must then accelerate at 0.20 $\mathrm{m} / \mathrm{s}^{\wedge} 2$ for how many seconds in order to achieve a run time of exactly 30.0 min ?
A. $180 . \mathrm{s}$
B. 73.7 s
C. 3.13 s
D. 2.53 s
