Circular Motion and Rotational Mechanics

Group \#1

Circular Motion Terminology:

- Uniform circular motion = when an object moves in a circle at a constant speed (v)
- Direction is changing
- Rotation = when a body turns about an internal axis
- Revolution = when a body turns around an external axis

Radial:

Tangential:

Behavior towards and away from the center of the circle

Behavior along the edge of the circle

In this case, the centripetal force is behaving radially

In this case, the velocity is tangential (v_{t})

Centripetal Forces (F_{c})

- "Center seeking"
- A force that points towards the center of a rotation Examples in everyday life:

Ball on a string

Orbit of planets

Roller coaster car on a loop

Determining F_{c} :

1. Mass (m)
2. Velocity (v)
3. Object's distance from the center (r)

$$
\begin{aligned}
& F_{c}=m \times a_{c} \\
& A_{c}=v^{2} / r
\end{aligned} \quad F_{c}=\frac{m \times v^{2}}{r}
$$

More Terminology:

- Frequency $(\mathrm{f})=$ the number of revolutions per second
- Measured in Hertz (Hz)
- Period $(T)=$ the time required to make one full

$\mathrm{T}=1 / \mathrm{f}$

 revolution- Measured in seconds (s)
- Centrifugal Force = a fictitious force experienced because your reference frame is accelerating
- "Center feeling"

Equations Overview:

$T=1 / f$

$V=\frac{2 \pi}{T}$

Example Problem

You have a .5 kg yoyo attached to a 2 meter long string. You swing this yoyo at a speed of $23 \mathrm{~m} / \mathrm{s}$. What is the force of tension in the string?

$F_{c}=\underline{m \times v^{2}}$
 r

Rotational Mechanics

Angular v. Linear Quantities

Quantity	Linear	Angular	Relationship
position	l in meters	Θ in radians	$\Theta=l / \mathrm{r}$
velocity	v in m / s	ω in rad $/ \mathrm{s}$	$\omega=\mathrm{v} / \mathrm{r}=\Delta \Theta \Delta \mathrm{t}$
acceleration	a in m / s	α in rad $/ \mathrm{s}^{2}$	$\alpha=\mathrm{a} / \mathrm{r}=\Delta \omega / \Delta \mathrm{t}$

- Linear = how fast
- Angular = how much and how quickly something rotates

Angular Quantities

Kinematic Equations

- Centripetal acceleration and

Frequency in terms of angular velocity

- Centripetal acceleration: $a_{c}=\omega^{2} r$
- Frequency: $\omega=2 \pi f$

Angular	Linear
$\omega_{\mathrm{f}}=\omega_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t}$	$\mathrm{Vf}_{\mathrm{f}}=\mathrm{v}_{\mathrm{i}}+\mathrm{a} \Delta \mathrm{t}$
$\Delta \Theta=\omega_{i} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^{2}$	$\Delta \mathrm{x}=\mathrm{V}_{\mathrm{i}} \Delta \mathrm{t}+1 / 2 \mathrm{a} \Delta \mathrm{t}^{2}$
$\omega_{\mathrm{f}}^{2}=\omega_{\mathrm{i}}{ }^{2}+2 \mathrm{a} \Delta \Theta$	$\mathrm{Vf}^{2}=\mathrm{vi}^{2}+2 \mathrm{a} \Delta \mathrm{x}$

Note: Kinematic Equations only work for constant accelerations

Torque and Doors:

- The "twisting" force that causes rotation
- $\boldsymbol{\tau}=\mathrm{rxF}$
- $\boldsymbol{\tau}=\mathrm{r} \times \mathrm{F} \times \operatorname{Sin} \theta$

Lever arm = the distance between the force and the axis of rotation

Rotational Inertia:

- Moment of Inertia = rotational inertia
- A measure of a body's resistance to a change in its rotation
- Depends on mass and mass distribution in relation to the axis of rotation
- $F=m a$
- $\mathrm{F}=\mathrm{mra}$
- $\boldsymbol{\tau}=\mathrm{mr}^{2} \mathrm{a}$
- $\mathrm{mr}^{2}=$ moment of inertia $\left(\mathrm{kg} \mathrm{x} \mathrm{m}{ }^{2}\right)$
- $\quad \Sigma \tau=1 \times \mathrm{a}$
- Newton's second law for rotation

Practice Problem

Find the number of revolutions the wheel of a Razor scooter makes when it has a diameter of 98 mm and travels a distance of 2.3 miles ($1 \mathrm{mi}=1609.34 \mathrm{~m}$).

Three Common Misconceptions

1. If a point is on the edge of a circle and another near the center, a) which would have the greater linear speed; b) which would have the greater angular speed?
a) The point on the edge
b) BOTH the points

- angular velocity is the same for all points of a rotating object

2. Objects in circular motion experience an outward force

- FALSE, because of Newton's first law of motion (objects in motion tend to stay in motion with the same speed and direction unless acted upon by an unbalanced force)
- the unbalanced force is the centripetal force, which is a net force acting towards the center which causes objects to seek the center

3. A cylinder with a larger radius will start rolling easier than a cylinder with a mass equal to that of the previous but a smaller radius

- The cylinder with the larger radius will have a greater rotational inertia, which means it would be harder to start and stop

