Circular Motion and Rotational Mechanics

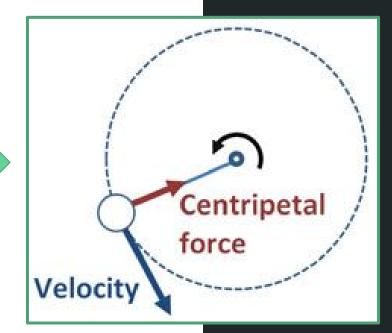
Group #1

Circular Motion Terminology:

• **Uniform circular motion** = when

an object moves in a circle at a constant speed (v)

- Direction is changing
- Rotation = when a body turns about an internal axis
- Revolution = when a body turns around an external axis

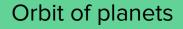

Radial:

Behavior towards and away from the center of the circle

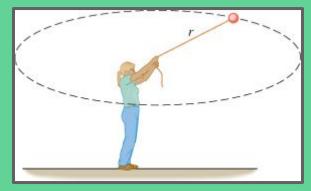
Tangential:

Behavior along the edge of the circle

In this case, the centripetal force is behaving radially


In this case, the velocity is tangential (v_t)

Centripetal Forces (F_c)


- "Center seeking"
- A force that points towards the center of a rotation

Examples in everyday life:

Ball on a string

Roller coaster car on a loop

Determining F_c :

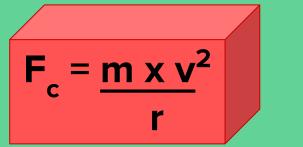
- 1. Mass (m)
- 2. Velocity (v)
- 3. Object's distance from the center (r)

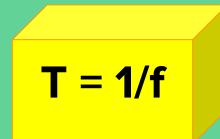
$$F_{c} = m x a_{c}$$

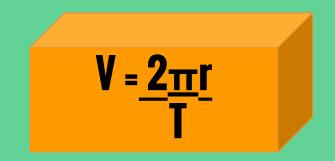
$$F_{c} = \frac{m x v^{2}}{A_{c}}$$

$$F_{c} = \frac{m x v^{2}}{r}$$

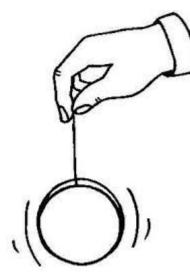
More Terminology:

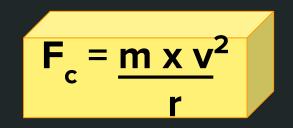

- Frequency (f) = the number of revolutions per second
 - Measured in Hertz (Hz)
- Period (T) = the time required to make one full revolution
 - Measured in seconds (s)
- Centrifugal Force = a fictitious force experienced


because your reference frame is accelerating


• "Center feeling"

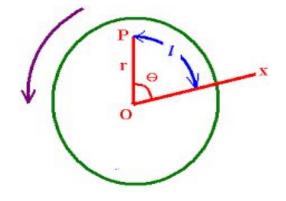
- **T** = 1/f


Equations Overview:



Example Problem

You have a .5 kg yoyo attached to a 2 meter long string. You swing this yoyo at a speed of 23 m/s. What is the force of tension in the string?


Rotational Mechanics

Angular v. Linear Quantities

Quantity	Linear	Angular	Relationship
position	<i>l</i> in meters	Θ in radians	$\Theta = l/r$
velocity	v in m/s	ω in rad/s	$ω=v/r=\DeltaΘ\Delta t$
acceleration	<i>a</i> in m/s	α in rad/s ²	$\alpha = a/r = \Delta \omega / \Delta t$

- Linear = how fast
- Angular = how much and how quickly

something rotates

Angular Quantities

- Centripetal acceleration and Frequency in terms of angular velocity
- Centripetal acceleration: $\frac{a_{c}}{\omega^2 r}$
- Frequency: ω = 2πf

Kinematic Equations

Angular	Linear	
$\omega_f = \omega_i + a\Delta t$	$v_i = v_i + a\Delta t$	
$\Delta\Theta = \omega_i \Delta t + 1/2a \Delta t^2$	$\Delta x = v_i \Delta t + 1/2a \Delta t^2$	
$\omega_{f}^{2}=\omega_{i}^{2}+2a\Delta\Theta$	$v_{f}^{2}=v_{i}^{2}+2a\Delta x$	

Note: Kinematic Equations only work for <u>constant</u> accelerations

Torque and Doors:

- The "twisting" force that causes rotation
- $\tau = r \times F_{\Box}$
- $\tau = r \times F \times Sin \theta$

Lever arm = the distance between the force and the axis of rotation

Rotational Inertia:

- Moment of Inertia = rotational inertia
 - A measure of a body's resistance to a change in its rotation
 - Depends on mass and mass distribution in relation to the axis of rotation
- F = ma
- F = mra
- <mark>τ = mr²a</mark>
 - \circ mr² = moment of inertia (kg x m²)
- Σ τ = Ι x α
 - Newton's second law for rotation

Practice Problem

Find the number of revolutions the wheel of a Razor scooter makes when it has a diameter of 98 mm and travels a distance of 2.3 miles (1 mi = 1609.34 m).

Three Common Misconceptions

 If a point is on the edge of a circle and another near the center, a) which would have the greater linear speed; b) which would have the greater angular speed?

- a) The point on the edge
- b) BOTH the points
 - angular velocity is the same for all points of a rotating object

- 2. Objects in circular motion experience an outward force
 - FALSE, because of Newton's first law of motion (objects in motion tend to stay in motion with the same speed and direction unless acted upon by an unbalanced force)
 - the unbalanced force is the centripetal force, which is a net force acting towards the center which causes objects to seek the center

3. A cylinder with a larger radius will start rolling easier than a cylinder with a mass equal to that of the previous but a smaller radius

 The cylinder with the larger radius will have a greater rotational inertia, which means it would be harder to start and stop