

Work

- Energy needed to enact a force through some displacement
- Measured in Joules (J)
- W=force parallel (to displacement)*displacement or $\mathrm{fd}(\cos \theta)$
- Assume force is constant
- Specify if the object is doing the work or if it is having work done on it
- Specify what force is doing the work

What is Energy?

- Energy is the ability to do stuff
- Energy is a scalar quantity (no direction)
- Energy is conserved, meaning that it cannot be created or destroyed
- Measured in Joules (J)

Types of Energy

- Kinetic Energy
- Potential Energy
- Gravitational Potential Energy
- Elastic Potential Energy
- Nuclear
- Thermal
- Chemical

Potential Energy

- How much energy an object has by virtue of its position or configuration
- Can only be defined for conservative forces
- Gravitational: mgh
- Elastic: $1 / 2(\mathrm{k})\left(\mathrm{X}^{\wedge} 2\right)$

Gravitational potential energy

- The change in potential energy that has physical meaning
- The work done by gravity depends only on the height, NOT ON THE PATH YOU TAKE!
- PEg=mgh = weight x height
- Example: A brick that has a mass of 20 kg is lifted 3 m above the ground, what is the potential Energy of the brick?
$\mathrm{PE} \mathrm{g}=\mathrm{mgh}=20 \mathrm{~kg} \times 9.81 \mathrm{~m} / \mathrm{s} \times 3 \mathrm{~m}^{2}=588.6 \mathrm{~J}$

Elastic Potential Energy

- Spring Force: Hooke's Law
- $\mathrm{Fs}=-\mathrm{kx}$ (k is spring constant $»$ measure of stiffness)
- This value is NEGATIVE because force is opposite displacement ("restoring force")
* $\mathrm{PEe}=1 / 2 \mathrm{kx}^{2}$
* Example: The spring constant of one spring is $220 \mathrm{~N} / \mathrm{m}$, and the spring has a potential energy of 40 J , How much is the spring stretched?

$$
\mathrm{PEe}=1 / 2 \mathrm{kx} \wedge 2 \quad 40 \mathrm{~J}=1 / 2(220 \mathrm{~N} / \mathrm{m})\left(\mathrm{X}^{\wedge} 2\right) \quad \mathrm{x}=0.60 \mathrm{~m}
$$

Conservative Forces

- Forces in which only the initial and final positions are important
- Path of the object doesn't matter
- Ex: Gravity, spring, elastic

Non-conservative Forces

- Forces in which the path of the object matters in addition to the initial and final positions of the object
- Potential Energy can't be defined for nonconservative forces
- Ex: Friction, air resistance, tension, applied force

Dissipative Forces

- Forces that reduce the total amount of mechanical energy when an object is in motion
- Ex: Friction

Energy Transformation

- Potential energy at the beginning equals the kinetic energy at the end
- Ex: Stone in freefall
- At the top the energy is all potential
- Mid-air the energy is both potential and kinetic
- Just before the stone hits the ground the energy is only kinetic

Work-Energy Theorem

- Net work= conservative forces+non-conservative forces (change in kinetic energy)
- Include all forces acting on the system
- Conservative forces= change in potential energy
- Non-conservative forces= change in kinetic energy+change in potential energy

Mass Energy

- Einstein: "All mass have intrinsic, internal energy just by virtue of their existence".
- $\mathrm{E}=\mathrm{mc}^{2}$
- $c=$ the speed of light $=3.00 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}$

Power

- The rate at which the work is done
- OR the rate at which energy is transformed
- $\mathrm{P}=\mathrm{W} / \mathrm{t}$
- Unit is Watts (W)

Machines

- Simple machines: device that use only the forces directly applied and accomplish their task with a single motion
- Input vs. Output
- W in= W out
- Mechanical Advantage: the ratio of output force to input force
- $\mathrm{MA}=\mathrm{F}$ out $/ \mathrm{F}$ in

Lever

- Includes a stiff structure (the lever) that rotates around a fixed point called the fulcrum
- Mechanical Advantage of lever=Fout/Fin=Lin/Lout
- L= Length of the lever, F= Force

Ramps

- Draw problem with given
forces/measurements
- MA=Length of ramp/height of ramp

Pulleys

- Like levers and ramps, pulleys sacrifice displacement to achieve a greater force
- MA is shown by how many ropes there are

Efficiency

- Output WORK/ Input WORK* $100=\%$ efficiency
- Always smaller than 1

Practice Problem

- A roller coaster car of 150 kg starts on a hill that is 30 m tall and it moves at $20 \mathrm{~m} / \mathrm{s}$. It must travel down the first hill and up a second hill that is 10 m tall.
- What is the potential energy at the top of the starting hill?
- What is the velocity at the bottom of first hill?
- What is the kinetic energy at the bottom of the second hill if the velocity changes to $25 \mathrm{~m} / \mathrm{s}$?

Answers

- 44,145 J
- $31.4 \mathrm{~m} / \mathrm{s}$
- 46,875 J

