UNIT 4

By Lily and Veronica

Momentum

Formula: p = m x v

Units: kg x m/s

A.k.a Fulmers (F)

Momentum is a

VECTOR

BASIC RULES

- Objects with more momentum are harder to stop
- Collisions that involve objects with large momentum have greater impacts
- Increases in mass or speed are responsible for greater momentum

CONSERVATION OF MOMENTUM

<u>Conservation of Momentum:</u> In an isolated system, momentum is conserved

Isolated System: No external unbalanced forces

 $M_1V_1 + M_2V_2 = M_1V_1' + M_2V_2'$

CONSERVATION OF ENERGY

In theory: Elastic Equations:

Kinetic Energy is conserved

 $\frac{1}{2}$ $m_1v_1^2$ + $\frac{1}{2}$ $m_2v_2^2$ = $\frac{1}{2}$ $m_1v_1^2$ + $\frac{1}{2}$ $m_2v_2^2$

In practice: Inelastic Equations: Kinetic energy is not conserved because some energy is converted into heat energy

 $KE_i = KE_f + TE$

 $KE_{f} \leq KE_{i}$

ELASTIC COLLISION

- Elastic collisions occur when the total kinetic energy is conserved when two objects collide
- Nearly impossible to have a completely elastic equation
- Formula:

 $\frac{1}{2}$ $m_1v_1^2$ + $\frac{1}{2}$ $m_2v_2^2$ = $\frac{1}{2}$ $m_1v_1^2$ + $\frac{1}{2}$ $m_2v_2^2$

INELASTIC COLLISIONS

- Occur when kinetic energy is not conserved.
 - \circ $\,$ The most common type of collision
- Initial kinetic energy is transfered into something else on impact
 - \circ KE_i = KE_f + TE
 - ∘ KEf ≤ KEi
- Perfectly inelastic equations stick together

CENTER OF MASS

- An object's center of mass is the point where the mass is concentrated
- Center of gravity and center of mass are usually the same point
- Center of mass does not need to be inside an object
 - Boomerangs' have theirs outside the object
 - Found experimentally

EXAMPLE PROBLEM: KINETIC ENERGY

If Car A was speeding at 40 m/s and bumped into Car B which was going at 26 m/s and Car A's mass was 1000 kg whereas Car B only had a mass of 850 kg, how fast would car B go if after the crash Car A's velocity was 10 m/s?

Answer: about 60 m/s

If the cars were 5 m away from a brick wall at the time of the crash, how fast would Car B have to break in order to stop in time? How much force would it have to apply?

Answer 3 s, -8500 N

PRACTICE PROBLEM

Assuming there is no energy lost, how much energy does Harry Potter use in the final battle against Voldemort?

Energy Exerted by Voldemort: 8368 kJ

KE of Wand towards Harry: 500J

Heat energy created by the clash: 20 kJ

