UNIT 4

By Lily and Veronica

Momentum

Formula: $p=m \times v$ Units: $k g$ x mss A.k.a Fulmers (F)

Momentum is a

VECTOR

BASIC RULES

- Objects with more momentum are harder to stop
- Collisions that involve objects with large momentum have greater impacts
- Increases in mass or speed are responsible
 for greater momentum

IMPULSE

Iupluse (()$=$ Change in Moneinum ($\mathrm{\square}$ P)
$\square P=M \square \square V$
$\mathrm{J}=\mathrm{f}_{\mathrm{m}} \mathrm{C} \mathrm{T}$

Conservation of momentum

Conservation of Momentum:
In an isolated system, momentum is conserved

Isolated System: No external unbalanced forces

Collision Balls,

$$
M_{1} V_{1}+M_{2} V_{2}=M_{1} V_{1}^{\prime}+M_{2} V_{2}^{\prime}
$$

Conservation of Energy

In theory: Elastic Equations:
Kinetic Energy is conserved
$y_{2} m_{1} v_{1}^{2}+y_{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}$
In practice: Inelastic Equations: Kinetic energy is not conserved because some energy is converted into heat energy
$K E_{i}=K E_{f}+T E$
$K E_{f} \leq K E_{i}$

Elastic Collision

- Elastic collisions occur when the total kinetic energy is conserved when two objects collide
- Nearly impossible to have a completely elastic equation
- Formula:
$1 / 2 m_{1} V_{1}^{2}+\frac{1}{2} m_{2} V_{2}^{2}=\frac{11}{2} m_{1} V_{1}^{2}+\frac{1}{2} m_{2} V_{2}^{2}$

Inelastic Collisions

- Occur when kinetic energy is not conserved.
- The most common type of collision
- Initial kinetic energy is transfered into something else on impact
- $\mathrm{KE}_{i}=\mathrm{KE}_{f}+\mathrm{TE}$
- $\mathrm{KE}_{f} \leq \mathrm{KE}_{i}$

- Perfectly inelastic equations stick together

Center of mass

- An object's center of mass is the point where the mass is concentrated
- Center of gravity and center of mass are usually the same point
- Center of mass does not need to be inside an object

- Boomerangs' have theirs outside the object
- Found experimentally

Example Problem: Kinetic Energy

If Car A was speeding at $40 \mathrm{~m} / \mathrm{s}$ and bumped into Car B which was going at $26 \mathrm{~m} / \mathrm{s}$ and Car A's mass was 1000 kg whereas Car B only had a mass of 850 kg , how fast would car B go if after the crash Car A's velocity was $10 \mathrm{~m} / \mathrm{s}$?

Answer: about $60 \mathrm{~m} / \mathrm{s}$
If the cars were 5 m away from a brick wall at the time of the crash, how fast would Car B have to break in order to stop in time? How much force would it have to apply?

Answer $3 \mathrm{~s},-8500 \mathrm{~N}$

Practice Problem

Assuming there is no energy lost, how much energy does Harry Potter use in the final battle against Voldemort?

Energy Exerted by Voldemort: 8368 kJ

KE of Wand towards Harry: 500J

Heat energy created by the clash: 20
 kJ

