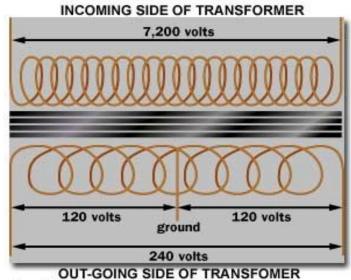
Magnetism

By Daniel, Paul, and Russell

SOME YUNG REVIEW

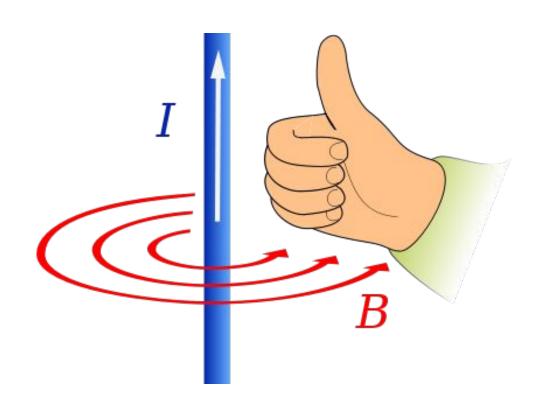
- Magnetic fields are created by the movement of charges.
- ❖ Magnetic fields go from North to South Poles.
- Domains are like-oriented electrons that determine the magnitude of the electric field
- ❖ Ferromagnets are materials that amplify magnetic properties b/c of their domains.

ROUND TWO

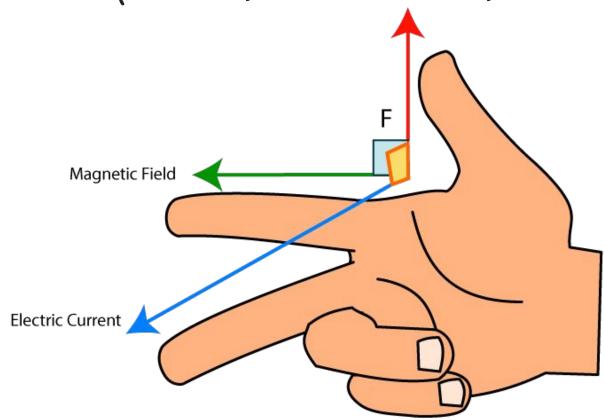

According to Lenz and Faraday's Law, voltage is induced when a magnetic field is undergoing change.

These laws are also used to explain the mechanics behind

how transformers work.


❖ Take note of how the iron

Core that is surrounded by coil



OUT-GOING SIDE OF TRANSFOMER
Graphic courtesy: How Stuff Works

RIGHT HAND RULE (CURRENT AND MAGNETIC FIELD)

RIGHT HAND RULE (CURRENT, MAGNETIC FIELD, AND FORCE)

RIGHT HAND RULE (VELOCITY, MAGNETIC FIELD, AND FORCE)

Basically the Same Thing.

SOME COMMON MISCONCEPTIONS/TIPS...

During a test, there are many things that may confuse us however, there are easy steps that can lessen the burden towards success.

• You should convert **A** from $\Phi = BA$ into $\Phi = B\pi r^2$.

❖ When there is a negative charge, use the Left Hand Rule.

Changing Magnetic Fields create an Electric Force and vice versa.

SOME PRACTICE: 1)

If a coil of wire containing 420 loops is placed in a magnetic field that oscillates between 7.3 T and 12.4 T every 1.3 s. If the induced voltage 2 V, what must be the radius of the coil?

YOU CAN DO IT:D

There is a current of 68A going right and a radius of 300mm. There is a fuzzy baseball ball going through the air at a speed of 2m/s with a charge of 1.3×10^{-7} C. The ball was thrown parallel to the current. Find force magnitude and direction. ($\mu_0 = 4\pi \times 10^{-7}$)

YOU HAVE NOW MASTERED THE ART OF MAGNETS

Good luck on the final!