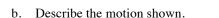

ΝΑΜΕ	Period	DATE					
	Practice#1	: Motion Gr	aphs & Ca	Iculations			
1. The position	of a wind-up toy is shown over sev						
a	_Estimate the initial position the	toy.	10				
b motion show	Calculate the average velocity of the toy for the notion shown.						
c	_Write a position equation for the	e toy's motion	Positoin, cm				
If the toy were to continue mo where would it be at 20.0 seconds?		ng in this way,			4 5	6 7 8	
			U		Time, sec		
2. A cart rolls do	own the ramp. Its initial position	is 0.55 m and its i	nitial velocity	is 0.20 m/s. It	t accelerates a	at a rate of 2.	4 m/s^2 .
a	Write the posi	tion equation for	the cart's moti	on using these	values.		
b	_Calculate its position at 0.40 sec	cond.					
c	_Calculate its velocity at 3.0 seco	onds.					
-	sition-time, velocity-time and an a h as x_0 , v_0 and a)	acceleration-time	plot for the car	t's motion. M	ark any know	n values on t	he
	time graph of a car is shown over ype of motion that created this gra						
		25 _[
bW position?	_What was the car's initial	22	,		····••		
		20¢ 18			· · · · · · · · · · · · · · · · · · ·		

- c. _____Did the car have an **initial** velocity? How can you tell?
- d. _____What is the **displacement** of the car over the first five seconds?
- e. _____Calculate the car's **average velocity** over the first five seconds.
- f. _____ Calculate the approximate **instantaneous velocity** of the car at 3.0 seconds.

g. Why doesn't the average velocity for the entire trip equal the instantaneous velocity of the car at 2.6 seconds?


h. _____Estimate when the instantaneous velocity is approximately zero.

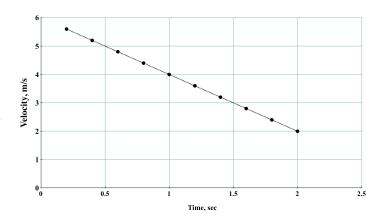
4. The graph shows the velocity vs. time for a rolling ball.

- a. Describe how the ball is moving.
- b. _____ What is the ball's **acceleration**?
- c. _____ What is the ball's **initial velocity**?
- d. _____ Write a general equation for the ball's velocity using the starting velocity and acceleration.
- e. <u>How fast would the ball be moving at the 2.0 seconds?</u>
- f. _____Calculate the time when the ball will stop.
- g. _____Calculate the ball's total **displacement** for the data shown.

5. The changing positions of a car shown in the picture.

a. _____ *Identify* the values that are given.

c. _____Estimate the car's displacement.


d. _____Calculate the average velocity of the car from 0 to 5 seconds.

e. _____Calculate the acceleration of the car.

6. A pumpkin is thrown directly upward with an **initial velocity** of 19.6 m/s.

a. _____ Identify the known values for this situation. (x, x_0, v, v_0, a, t)

- b. _____ How much **time** will it take for the pumpkin to reach its maximum height?
- c. _____ How high will the pumpkin get?

Direction of motion

sec

240

280

200

0 sec

320

2 sec

160

sec

120

e e

80

40

0