| IMPULSE AND MOMENTUM | | Name | | |----------------------|---|---|--| | 1. | Calvin is walking down the street at 4.0km/hr. (Caution: watch units!) | If he has a mass of 70. Kg, what is his momentum? | | | 2. | How fast must a 20.0kg child be moving on he traveling at 2.00m/s? | r tricycle to have the same momentum as a 1.20 x 10 ³ kg car | | | 3. | On April 15, 1912; the luxury cruise liner Titani
A) What momentum would the 4.23 x
with a speed of 11.6m/s? (In reality it | 10 ⁸ kg ship have imparted to the iceberg if it hit it head on | | | | B) If the captain of the ship had seen t
use the idea of impulse to explain why | he iceberg a kilometer ahead and had tried to slow down,
would this have been a futile effort? | | | 4. | the integrity of the passenger compartment. If | utomobiles by putting them through crash test to observe a 1.00 x 10 ² kg car is sent towards a cement wall with a r in 8.00 x 10 ⁻² s; with what force was it brought to rest? | | | 5. | A 1.0×10^4 kg freight car is rolling along a track at 3.0 m/s. Calculate the time needed for a force of 1.0×10^2 N to stop the car. | |-------|---| | 6. | Rhonda, who has a mass of 60.0kg, is riding at 35.0m/s in her sports car when she must suddenly slam on the brakes to avoid hitting a dog crossing the road. She is wearing her seat belt, which brings her to a stop in 0.400s. A) What force was produced by the seatbelt on Rhonda? | | | B) If she had not been wearing her seatbelt, and the windshield had stopped her head in 1.00×10^{-3} s, what force would the windshield have produced on her head? | | | C) How many times greater is the stopping force of he windshield than the seatbelt? | | Durin | A CREDIT g an autumn storm, a 1.00kg hail stone traveling at 20.0m/s made a 0.200cm deep dent in the hood of 's new car. What average force did the car hood exert to stop the damaging hail stone? |