\qquad
\qquad

$\left.\begin{array}{\|c\|}\hline \text { Data } \\ \hline \begin{array}{\|c\|c\|}\hline \text { Time } \\ (\mathrm{sec})\end{array} \\ \hline \begin{array}{c}\text { Distance } \\ (\mathrm{m})\end{array} \\ \hline 0\end{array}\right) 0$
0.5
1

The graph on the right is a distance versus time graph. That means that it shows how far an object has traveled after so many seconds.

This is what we call a linear graph, because the data creates a straight line.

Slope has actual meaning in science - Slope for the above graph:

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta \mathbf{x}}=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{(20-10) \mathrm{m}}{(2-1) \mathrm{sec}}=\frac{10 \mathrm{~m}}{1 \mathrm{sec}}=10 \mathrm{~m} / \mathrm{s} \quad \begin{gathered}
\begin{array}{c}
\text { The slope of a } \\
\text { position vs. time graph } \\
\text { is } \text { SPEED }
\end{array}
\end{gathered}
$$

Graphing Conventions: The independent variable is always on the x-axis. The dependent variable is always on the y-axis.

Independent variable-Time
Dependent variable-position
Dependent variable-position
Linear graph.
Position vs. time graph, so
slope $=\operatorname{speed}($ position/time $)$
(Pick any two points)
Slope $=$ rise $/$ run $=\Delta y / \Delta x=$
$\frac{(2-2) \mathrm{m}}{(10-2) \mathrm{sec}}=\frac{0 \mathrm{~m}}{8 \mathrm{sec}}=0 \mathrm{~m} / \mathrm{s}$

Time is always an independent variable (x -axis).

The slope (speed) of a flat line is zero-no speed. The object is at rest.

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{(35-5) \mathrm{m}}{(5-0) \text { sec }}=\frac{30 \mathrm{~m}}{5 \mathrm{sec}}=6 \mathrm{~m} / \mathrm{s}
$$

$$
\text { slope }=\frac{\Delta y}{\Delta x}=\frac{(15-5) \mathrm{m}}{(10-0) \mathrm{sec}}=\frac{10 \mathrm{~m}}{10 \mathrm{sec}}=1 \mathrm{~m} / \mathrm{s}
$$

