Forces WS 1 Answers

1. What is the mass of a dog that weighs $75-\mathrm{N}$? 7.5 kg
2. An astronaut with all her equipment has a mass of $95-\mathrm{kg}$.
a. How much will she weigh on the Earth? 950 N
b. How much will she weigh on the moon where acceleration to gravity is $1.67-\mathrm{m} / \mathrm{s}^{2}$? 159 N
3. An object with a mass of $15-\mathrm{kg}$ is observed to accelerate at $3 \mathrm{~m} / \mathrm{s}^{2}$. What is the net force on the object? 45 N
4. A net force of $200-\mathrm{N}$ acts an object with a mass of $40-\mathrm{kg}$ on. What is the acceleration of the object? $5 \mathrm{~m} / \mathrm{s}^{2}$
5. An object is observed to accelerate at $14 \mathrm{~m} / \mathrm{s}^{2}$ while under the influence of $270-\mathrm{N}$ net force. What is the object's mass? 19.3 kg
6. A net force of $150-\mathrm{N}$ acts upon an object with a mass of $25-\mathrm{kg}$ for a time period of 4 seconds. What is the acceleration acting on the object? $6 \mathrm{~m} / \mathrm{s}^{2}$
a. If the initial velocity of the object is $13-\mathrm{m} / \mathrm{s}$, what is the final velocity? $37 \mathrm{~m} / \mathrm{s}$
b. What is the distance traveled of the $25-\mathrm{kg}$ object? 48 m

Forces WS 2 Answers

7. An object with a mass of $9-\mathrm{kg}$ is observed to have an initial velocity of $3 \mathrm{~m} / \mathrm{s}$. Twelve seconds later its velocity is $24 \mathrm{~m} / \mathrm{s}$. What is the acceleration acting on the object? $1.75 \mathrm{~m} / \mathrm{s}^{2}$
a. What must be the force acting on the object during that time? 15.8 N
b. If the $9-\mathrm{kg}$ object initial position is $15-\mathrm{m}$ from the reference point, what will be its final position? 177 m
8. A 95-N force acts upon an object. It is initially at rest and is observed to travels distance of $400-\mathrm{m}$ in 6 -seconds. What is the acceleration acting on the object? $22.2 \mathrm{~m} / \mathrm{s}^{2}$
a. What is the mass of the object? 4.3 kg
b. What is the final velocity of the $95-\mathrm{N}$ object? $133 \mathrm{~m} / \mathrm{s}$
9. A parachutist is falling under the influence of Earth's gravity. His mass is $80-\mathrm{kg}$.
a. Neglecting air resistance, what will be his acceleration? $9.81 \mathrm{~m} / \mathrm{s}^{2}$
b. What, therefore, is the net force acting on the parachutist (still neglecting air resistance)? $\mathbf{7 8 5} \mathbf{N}$
c. Now he opens the parachute, which provides an additional force of $300-\mathrm{N}$ in the opposite direction of gravity. What is the net force acting on the parachutist? 485 N
d. With his parachute now open, what will the acceleration be? $6.1 \mathrm{~m} / \mathrm{s}^{2}$
e. Repeat \# 9 for a parachutist with a mass of $150-\mathrm{kg}$. Will his acceleration for part d be more, less or the same? Explain.
f. $9.81 \mathrm{~m} / \mathrm{s}^{2} 1470 \mathrm{~N} \quad 1170 \mathrm{~N} \quad 7.8 \mathrm{~m} / \mathrm{s}^{2}$
10. A sled is being pulled along a horizontal road at constant speed by means of a rope that makes a 25° with the horizontal. If the friction between the sled and the snow is $84-\mathrm{N}$, how much is the forward pull? 84-N
a. How much is the tension on the rope? 93-N
11. A sign is supported as shown; the tension in the rope is $350-\mathrm{N}$. How much does the sign weigh if the angle between the rope and the wall is $40^{\circ} ? 268-\mathrm{N}$
12. A $20-\mathrm{kg}$ pile of books is resting on a plank tilted so that it makes an angle of 20° with the ground. How much force do the books exert against the plank? 188-N
13. A force of $20-\mathrm{N}$ is needed to push a wagon up a frictionless 35° slope. How much does the wagon weigh? 24- \mathbf{N}
