CONCEPTUAL

Ohm's Law

1. How much current flows in a 1000 -ohm resistor when 1.5 volts are impressed across it?
\qquad
2. If the filament resistance in an automobile headlamp is 3 ohms, how many amps does it draw when connected to a 12 -volt battery?
3. The resistance of the side lights on an automobile are 10 ohms. How much current flows in them when connected to 12 volts?

CONDUCTORS AND RESISTORS HAVE RESISTANCE TO THE
4. What is the current in the 30 -ohm heating coil of a coffee maker that operates on a 120 -volt circuit?
\qquad
5. During a lie detector test, a voltage of 6 V is impressed across two fingers. When a certain question is asked, the resistance between the fingers drops from 400000 ohms to 200000 ohms . What is the current (a) initially through the fingers, and (b) when the resistance between them drops?
(a) \qquad (b)
\qquad
6. How much resistance allows an impressed voltage of 6 V to produce a current of 0.006 A ?
\qquad
7. What is the resistance of a clothes iron that draws a current of 12 A at 120 V ?
\qquad
8. What is the voltage across a 100 -ohm circuit element that draws a current of 1 A ?
\qquad
9. What voltage will produce 3 A through a 15 -ohm resistor?

10. The current in an incandescent lamp is 0.5 A when connected to a $120-\mathrm{V}$ circuit, and 0.2 A when connected to a $10-\mathrm{V}$ source. Does the resistance of the lamp change in these cases? Explain your answer and defend it with numerical values.
\qquad
\qquad

CONCEPTUALP/YG/CG practice page

Chapter 22 Electric Current Electric Power

Recall that the rate energy is converted from one form to another is power.

$$
\text { power }=\frac{\text { energy converted }}{\text { time }}=\frac{\text { voltage } \times \text { charge }}{\text { time }}=\text { voltage } \times \frac{\text { charge }}{\text { time }}=\text { voltage } \times \text { current }
$$

The unit of power is the watt (or kilowatt). So in units form,
Electric power $($ watts $)=$ current (amperes) \times voltage (volts),
where 1 watt $=1$ ampere $\times 1$ volt.

5. The equation

$$
\text { power }=\frac{\text { energy converted }}{\text { time }}
$$

rearranged gives
energy converted =
6. Explain the difference between a kilowatt and a kilowatt-hour.

7. One deterrent to burglary is to leave your front porch light on all the time. If your fixture contains a $60-\mathrm{W}$ bulb at 120 V , and your local power utility sells energy at 8 cents per kilowatt-hour, how much will it cost to leave the bulb on for the whole month? Show your work on the other side of this page.
\qquad Name \qquad Period \qquad

1. Answer the following questions about the Series circuit.
a. What is the voltage leaving the battery?
b. What is the total resistance of the circuit?
c. What is the current that goes past \#1?
d. How much current goes through the 3Ω resistor?

e. How much voltage is used by the 3Ω resistor?
f. What is the current that goes past \#2?
g. How much current goes through the 4Ω resistor?
h. How much voltage is used by the 4Ω resistor?
i. How much current goes through the 2Ω resistor?
j. How much voltage is used at the 2Ω resistor?
k. How much current goes through \#3?
2. Answer the following questions about the Parallel circuit.
a. What is the voltage leaving the battery?
b. What is the total resistance of the circuit?
c. What is the current that goes past \#1?
d. How much voltage is used by the 3Ω resistor?
e. How much current goes through the 3Ω resistor?

f. How much voltage is used at the 6Ω resistor?
g. How much current goes through the 6Ω resistor?
h. How much current goes through \#2?
