

Electricity/Electrostatics

Electrostatics is the study of charges at rest

► Electricity puts those charges in motion

Batteries/Voltage

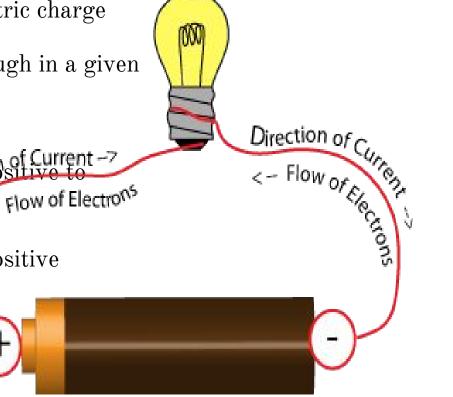
- Batteries supply electric energy to a system
- Batteries use a chemical reaction to create a potential difference across its positive and negative terminals

Electric Current

➤ Electric current is the flow of electric charge

➤ It's how much charge passes through in a given

amount of time


► Conventional current runs from of Current --7 negative Flow of Electron⁵

► Electrons flow from negative to positive

 \succ I = $\Delta Q / \Delta t$

➤ Measured in amperes (A)

 \succ 1 A = 1 C/s

Ohm's Law

In the early 19th Century, Georg Simon Ohm established through experiments that the current in a wire is proportional to the potential difference applied to its ends

- \succ V/I = constant
- \succ Resistance (R) is measured in ohms (Ω)
- \succ V = IR

Resistance

All electronic devices offer resistance to the flow of current

- ➤ Anything that offers resistance "eats up" electric energy
- ➤ It can also be seen as converting electric energy to heat energy
- > $R = \rho L/A$
- $\blacktriangleright \rho$ is the resistivity of the material
- > Measured in Ωm

Superconductors and Resistivity

All regular conductors put up some electrical resistance

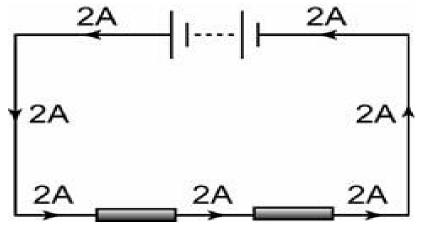
- ➤ The resistivity of a material can depend on temperature, and resistivity usually increases with temperature
- ➤ Some materials, once cooled below a particular critical temperature, will offer exactly zero resistance
- ➤ Materials acting like this are considered superconductors

Power

Electric energy is useful because it can be easily transformed into other forms of energy

- ➤ motors turn it into mechanical work
- ➤ electric heaters, stoves, toasters, and hair dryers turn it into thermal energy
- \succ lightbulbs turn it into light and thermal energy
- $\succ P = IV = I^2R = V^2/R$

Series Circuit: Current


When two or more resistors are connected end to end, they are said to be connected in series

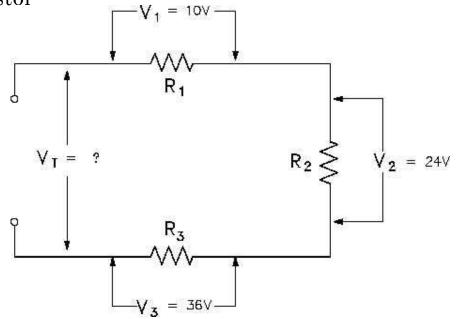
> Any charge that passes through R1 will also pass through R2 and then R3, etc.

 \blacktriangleright Hence, the same current (I) will pass

through each resistor

Measured in Amps (A) or (C/s)

Series Circuits: Voltage


Each resistor eats up some of the energy supplied by the battery

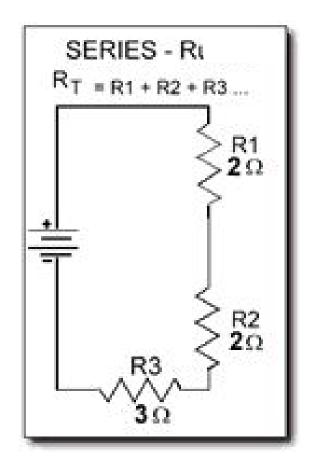
- ➤ i.e. the voltage will drop across each resistor
- ➤ Ohm's Law tells us how much the

voltage will drop:

 $V_1 = IR_1, V_2 = IR_2, V_3 = IR_3$, etc. $\succ V = V_1 + V_2 + V_3 + V_4$

Measured in Volts (V)

Series Circuits: Resistance


- $\mathbf{V}=\mathbf{V}_1+\mathbf{V}_2+\mathbf{V}_3+\mathbf{V}_4$
- $=\mathrm{IR}_1+\mathrm{IR}_2+\mathrm{IR}_3+\mathrm{IR}_4$

The battery doesn't know the difference between one

big resistor and several small resistors working in series

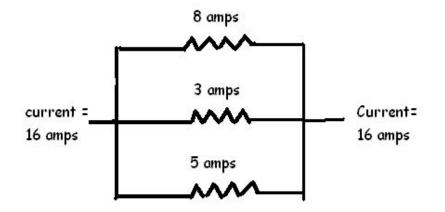
 $\succ V = IR_{eq}$ $\succ R_{eq} = R_1 + R_2 + R_3 + R_4$

Measured in Ohms $\left(\Omega\right)$

Parallel Circuits: Current / Voltage

Resistors connected in parallel will split the current into separate branches

➤ The "forks in the road" where current can split off into multiple paths are called


junctions

$$\succ I = I_1 + I_2 + I_3$$

Resistors are connected in parallel, each

Experiences the same voltage

• $1/R_{T} = 1/R_{1} + 1/R_{2} + 1/R_{3}$

Series/Parallel

	Series	Parallel
V	$V = V_1 + V_2 + V_3 + \dots$	constant
I	Constant	$ = _1 + _2 + _3 + \dots$
R	$R_{eq} = R_1 + R_2 + R_3 + \dots$	$(1 \ R_{T}) = (1 \ R_{1}) + (1 \ R_{2}) + (1 \ R_{3}) + \dots$

Kirchhoff's Rules

The rules are really just convenient applications of conservations of charge and energy

1. Junction Rule: at any junction, the sum of currents in equals the sum of currents out

► (conservation of charge)

Loop Rule: the sum of the changes in potential around any closed path of a circuit must be zero

► (conservation of energy)

Capacitors in Circuits

Capacitors in parallel:

> The junction rule tells us that current in equals current out, and by extension, charge in equals charge out

- $\succ Q = Q1 + Q2 + Q3$
- \succ Combine with Q = CV
- \succ Ceq = C1 + C2 + C3

Capacitors in Circuits

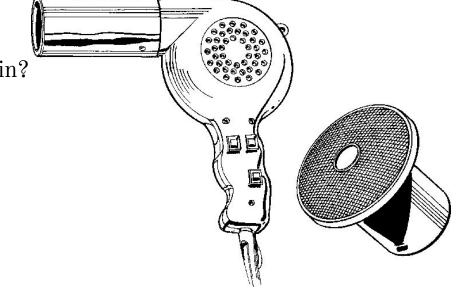
Capacitors in series:

 \succ Conservation of energy tells us that electric potential supplied by the battery will equal the sum of the potentials used up by circuit components

$$\succ V = V1 + V2 + V3$$

$$\succ$$
 Combine with $Q = CV$

 $(1/Ct)=(1/C)+(1/C2)+(1/C3) \leftarrow Series$


Common Misconceptions

- Batteries do not create or even supply electric charge, all they do is push charge
- Electrical charges move quite slowly (about 1 meter per second), but in a circuit a light bulb will turn on as soon as a switch is turned on because when this happens, charge everywhere in the circuit begins to move.
- Charge does not become used up as it flows through a circuit, and the amount of charge that comes out of a light bulb is the same amount that enters the light bulb.

Question (Sanity Check)

A hair dryer draws 9.0 A when plugged into a 120-V line

- a) What is its resistance?
- b) How much charge passes through in 15 min?

