Name	Period
	Velocity WS

[1] The conversion "rate" of Celsius temperature to Fahrenheit temperature is graphed.
a. \qquad Determine the rate.
b. \qquad Write the equation for this relationship.
c. \qquad Calculate the Celsius temperature for a Fahrenheit temperature of $75^{\circ} \mathrm{F}$.

[2] The graph shown to the right could represent distinctly
different types of motion depending on the axes labels. Describe the motion shown if...
a. $x=$ time, $y=$ position
b. $x=$ time, $y=$ velocity
c. $\mathrm{x}=$ horizontal position, $\mathrm{y}=$ vertical position

[3] The velocity of a gerbil is shown over time.
a. \qquad Calculate the average acceleration of the gerbil from $\mathrm{t}=0$ to $\mathrm{t}=6$ seconds.
b. \qquad Calculate the average acceleration from $\mathrm{t}=6$ to $\mathrm{t}=10$ seconds.
c. \qquad Calculate the position of the gerbil at $t=6$ seconds (assume X_{0}, the initial position is 30 m).
d. Sketch a corresponding position-time graph to match this graph.
e. \qquad Calculate the net displacement of the gerbil over the entire trip.
f. Can the final position of the gerbil be determined from the given information? Explain.

8. Sketch a matching acceleration-time graph for this motion.
[4] A car travels 20 km toward an observer for 30 minutes. It then turns around and moves away from the observer for 50 km in 45 minutes. Calculate:
a. \qquad The displacement of the car over this time.
b. \qquad The average velocity of the car over the entire trip.
c. \qquad The average speed of the car over the trip.
d. Sketch a position graph of the car's motion over time and label the slope(s).
e. Sketch a velocity graph of the car's motion.
[5] Sketch a velocity-time graph for a cart rolling down a ramp with consistently increasing acceleration.
[6] A parachutist bails out and freely falls for 50 m . Then the parachute opens, and thereafter she decelerates at $2.0 \mathrm{~m} / \mathrm{s}^{2}$. She reaches the ground with a speed of $3.0 \mathrm{~m} / \mathrm{s}$.
a. \qquad How long is the parachutist in the air.
b. \qquad At what height does the fall begin?
[7] The position of a soccer player is shown over time. From point 0 to 3 seconds, the position of the player is given by: x $=\frac{5}{2} \mathrm{mt}$ (where " m " is a positive constant). From point 3 to 7 seconds, the position of the player is given by $x=-\mathrm{mt}^{2}+\frac{15}{2} \mathrm{mt}-11 \mathrm{~m}$.
a. \qquad What is the average velocity of the player from 0 to 3 seconds, in terms of m ?

b. \qquad Based on the motion equation, how far is the player from the observer, initially?
c. \qquad Using the position equations, calculate when the soccer player reaches her furthest point from the observer, in terms of m.
d. Sketch a corresponding velocity-time graph for this motion. Note any relevant slopes or intercepts.
e. \qquad From 0 to 7 seconds, when does the player reach the maximum velocity?
f. Describe the motion from $\mathrm{t}=3$ to 7 seconds.
9. Sketch a matching acceleration-time graph for this motion over seven seconds.
h. \qquad Assume the player reaches a distance of 15 meters at $\mathrm{t}=3$ seconds. Calculate m .
[8] A stone is thrown vertically upward. On its way up, it passes a point A with a speed V , and point $B, 3.00 \mathrm{~m}$ higher than A, with a speed $(1 / 2) \vee$. Calculate...
a. \qquad the speed V.
b. \qquad The maximum height reached by the stone above point B.
[9] \qquad The sport with the fastest moving ball is jai alai where measured speeds have reached $303 \mathrm{~km} / \mathrm{hr}$. If a professional jai alai player faces ball at that speed and blinks, he blacks out the scene for 100 ms . How far does the ball move during his blink?

