Physics 30 Worksheet \# 3: Conservation of Momentum (1)

1. A 2.50 kg ball moving at $7.50 \mathrm{~m} / \mathrm{s}$ is caught by a 70.0 kg man while the man is standing on ice. How fast will the man / ball combination be moving after the ball is caught by the man?
2. A 1200 kg car traveling North at $20.0 \mathrm{~m} / \mathrm{s}$ collides with a 1400 kg car traveling South at $22.0 \mathrm{~m} / \mathrm{s}$. The two cars collide and entangle. What is the resulting velocity of the wreckage?
3. A 5.00 kg ball hits a 75.0 kg man standing at rest on ice. The man catches the ball. How fast does the ball need to be moving in order to send the man off at a speed of $3.00 \mathrm{~m} / \mathrm{s}$?

4. A $1.50 \times 10^{3} \mathrm{~kg}$ car traveling at $100 \mathrm{~km} / \mathrm{h}$ South collides with a $1.20 \times 10^{3} \mathrm{~kg}$ car traveling North at 100 km / h. The heavier car continues to move South after the collision, but slows to $25.0 \mathrm{~km} / \mathrm{h}$. How fast is the lighter car moving after the collision?
5. A 92.0 kg football player running at $6.50 \mathrm{~m} / \mathrm{s}$ North collides with an 85.0 kg football player running at $6.00 \mathrm{~m} / \mathrm{s}$ South. The 92.0 kg football player continues moving at a velocity of $2.00 \mathrm{~m} / \mathrm{s}$ after the collision. What is the velocity of the 85.0 kg football player after the collision?
6. A 75.0 kg man is standing at rest on ice while holding a 4.00 kg ball. If the man throws the ball at a velocity of $3.50 \mathrm{~m} / \mathrm{s}$ forward, what will his resulting velocity be?
7. A person holding a 15.0 kg gun containing one 50.0 g bullet is riding on a train that is traveling at 75.0 km / h East. If the man fires the gun and the bullet moves with a velocity of $350 \mathrm{~m} / \mathrm{s}$ East (relative to the train), what is the velocity of the gun relative to the ground?
